已知a=
5
-1
2
,若logam>loga5,,則m的取值范圍是
(0,5)
(0,5)
分析:根據(jù)函數(shù) y=logax在它的定義域(0,+∞)上是減函數(shù),故由logam>loga5 可得m的取值范圍.
解答:解:∵a=
5
-1
2
,0<a<1,函數(shù) y=logax在它的定義域(0,+∞)上是減函數(shù),
故由logam>loga5 可得  0<m<5,
故答案為 (0,5).
點(diǎn)評(píng):本題主要考查對(duì)數(shù)函數(shù)的單調(diào)性和特殊點(diǎn),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a=
5
-1
2
,函數(shù)f(x)=logax,若正實(shí)數(shù)m,n滿足f(m)>f(n),則m,n的大小關(guān)系為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a=
5
-1
2
,函數(shù)f(x)=loga(1-x),若正實(shí)數(shù)m、n滿足f(m)>f(n),則m、n的大小關(guān)系為
m>n
m>n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a=
5
-1
2
,函數(shù)f(x)=ax,若實(shí)數(shù)m,n滿足f(m)<f(n),則m、n的大小關(guān)系是
m>n
m>n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x∈R,記不超過x的最大整數(shù)為[x],令{x}=x-[x],若已知a={
5
+1
2
},b=[
5
+1
2
],c=
5
+1
2
給出下列結(jié)論:(1)2lnb=lna+lnc(2)ln2b=lnalnc;(3)lna+lnb+lnc=0(4)lnalnblnc=1(5)lna+lnb+lnc=1.其中正確的結(jié)論是
(1)(3)
(1)(3)

查看答案和解析>>

同步練習(xí)冊(cè)答案