若對于預(yù)報變量y與解釋變量x的10組統(tǒng)計數(shù)據(jù)的回歸模型中,計算R2=0.95,又知?dú)埐钇椒胶蜑?20.55,那么的值為( )
A.241.1 | B.245.1 | C.2411 | D.2451 |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:單選題
設(shè)某大學(xué)的女生體重(單位:)與身高(單位:)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù),用最小二乘法建立的回歸方程為,則下列結(jié)論中不正確的是( )
A.與具有正的線性相關(guān)關(guān)系 |
B.回歸直線過樣本點(diǎn)的中心 |
C.若該大學(xué)某女生身高增加lcm,則其體重約增加0.85kg |
D.若該大學(xué)某女生身高為170cm,則可斷定其體重必為58.79kg |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知變量與正相關(guān),且由觀測數(shù)據(jù)算得樣本平均數(shù),,則由該觀測的數(shù)據(jù)算得的線性回歸方程可能是
A. | B. |
C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
如圖是年元旦晚會舉辦的挑戰(zhàn)主持人大賽上,七位評委為某選手打出的分?jǐn)?shù)的莖葉統(tǒng)計圖,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的方差為( )
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
在某次測量中得到的樣本數(shù)據(jù)如下:82、84、84、86、86、86、88、88、88、88.若樣本數(shù)據(jù)恰好是樣本數(shù)據(jù)每一個數(shù)都加2后所得數(shù)據(jù),則、兩個樣本的下列數(shù)字特征對應(yīng)相同的是( )
A.眾數(shù) | B.平均數(shù) | C.中位數(shù) | D.方差 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
甲、乙兩名同學(xué)在5次數(shù)學(xué)考試中,成績統(tǒng)計用莖葉圖表示如圖所示,若甲、乙兩人的平均成績分別用、表示,則下列結(jié)論正確的是( )
A.,且甲比乙成績穩(wěn)定 | B.,且乙比甲成績穩(wěn)定 |
C.,且甲比乙成績穩(wěn)定 | D.,且乙比甲成績穩(wěn)定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
有一個容量為200的樣本,其頻率分布直方圖如圖所示.根據(jù)樣本的頻率分布直方圖估計,樣本數(shù)據(jù)落在區(qū)間[10,12)內(nèi)的頻數(shù)為( )
A.18 | B.36 | C.54 | D.72 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
某高中共有學(xué)生2000名,各年級的男生、女生人數(shù)如下表.已知在全校學(xué)生中隨機(jī)抽取1名,抽到二年級女生的概率是0.19,現(xiàn)用分層抽樣的方法在全校抽取64名學(xué)生,則應(yīng)在三年級抽取的學(xué)生人數(shù)為( )
| 一年級 | 二年級 | 三年級 |
女生 | 373 | x | y |
男生 | 377 | 370 | z |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
為了研究某藥品的療效,選取若干名志愿者進(jìn)行臨床試驗(yàn),所有志愿者的舒張壓數(shù)據(jù)(單位:kPa)的分組區(qū)間為[12,13),[13,14),[14,15),[15,16),[16,17],將其按從左到右的順序分別編號為第一組,第二組,,第五組,右圖是根據(jù)試驗(yàn)數(shù)據(jù)制成的頻率分布直方圖,已知第一組與第二組共有20人,第三組中沒有療效的有6人,則第三組中有療效的人數(shù)為( )
A.6 | B.8 | C.12 | D.18 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com