設(shè)函數(shù)f(x)是定義在R上的以7為周期的奇函數(shù),若f (5)>1,f (2011)=數(shù)學(xué)公式,則a的取值范圍是


  1. A.
    (-∞,0)
  2. B.
    (0,3)
  3. C.
    (0,+∞)
  4. D.
    (-∞,0)∪(3,+∞)
B
分析:利用函數(shù)的周期性和奇偶性,將f (2011)轉(zhuǎn)化為f(5)的關(guān)系,然后利用f (5)>1,解不等式即可.
解答:因?yàn)楹瘮?shù)f(x)的周期是7,所以f (2011)=f (288×7-5)=f (-5),
因?yàn)楹瘮?shù)為奇函數(shù),所以f (2011)=f (288×7-5)=f (-5)=-f(5),
因?yàn)閒 (2011)=,f (5)>1,所以f (2011)==-f (5)<-1,
+1<0,所以,解得0<a<3.
故選B.
點(diǎn)評(píng):本題主要考查函數(shù)奇偶性和周期性的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)是定義在(-∞,+∞)上的增函數(shù),如果不等式f(1-ax-x2)<f(2-a)對(duì)于任意x∈[0,1]恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)是定義在(0,+∞)上的減函數(shù),并且滿足f(xy)=f(x)+f(y),f(
1
3
)=1

(1)求f(
1
9
)
;
(2)若f(x)+f(2-x)<2,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)是定義在[-1,0)∪(0,1]上的偶函數(shù),當(dāng)x∈[-1,0)時(shí),f(x)=x3-ax(a∈R).
(1)當(dāng)x∈(0,1]時(shí),求f(x)的解析式;
(2)若a>3,試判斷f(x)在(0,1]上的單調(diào)性,并證明你的結(jié)論;
(3)是否存在a,使得當(dāng)x∈(0,1]時(shí),f(x)有最大值1?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)是定義在[a,b]上的奇函數(shù),則f(a+b)=
0
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)是定義在R上的偶函數(shù).若當(dāng)x≥0時(shí),f(x)=
|1-
1
x
0
x>0;,
x=0.

(1)求f(x)在(-∞,0)上的解析式.
(2)請(qǐng)你作出函數(shù)f(x)的大致圖象.
(3)當(dāng)0<a<b時(shí),若f(a)=f(b),求ab的取值范圍.
(4)若關(guān)于x的方程f2(x)+bf(x)+c=0有7個(gè)不同實(shí)數(shù)解,求b,c滿足的條件.

查看答案和解析>>

同步練習(xí)冊(cè)答案