設(shè)f:N*→N*,f(x)是定義在正整數(shù)集上的增函數(shù),且f(f(k))=3k,則f(2012)=________.

3849
分析:對(duì)f(f(k))=3k取k=1,得f(f(1))=3,再通過(guò)討論可得f(1)=2,進(jìn)一步可得f(2)=3,f(3)=6=3f(1),f(6)=9=3f(2),f(9)=18=3f(3),…,猜測(cè)f(3k)=3f(k),并利用反證法加以證明.依此作為公式,算出f(2187)=37f(1)=4374,f(1944)=35f(8)=3645,結(jié)合f(k)的值域包括所有3的倍數(shù),利用等差數(shù)列通項(xiàng)公式,算出:f(2012)=3645+(2012-1944)×3=3849.
解答:∵f(f(k))=3k,∴取k=1,得f(f(1))=3,
假設(shè)f(1)=1時(shí),有f(f(1))=f(1)=1矛盾
假設(shè)f(1)≥3,因?yàn)楹瘮?shù)是正整數(shù)集上的增函數(shù),得f(f(1))≥f(3)>f(1)≥3矛盾
由以上的分析可得:f(1)=2,代入f(f(1))=3,得f(2)=3,
可得f(3)=f(f(2))=3×2=6,f(6)=f(f(3))=3×3=9,f(9)=f(f(6))=3×6=18
由f(f(k))=3k,取k=4和5,得f(f(4))=12,f(f(5))=15,
∵在f(6)和f(9)之間只有f(7)和f(8),且f(4)<f(5),
∴f(4)=7,f(7)=12,f(8)=15,f(5)=8,
由f(x)是增函數(shù)可得f(x)的反函數(shù)f-1(x)也是增函數(shù)
下證f(3k)=3f(k),且f-1(3k)=3f-1(k),
①若f(3k)<3f(k),則f-1(3k)<3f-1(k),
∵滿足f(n)=k的n必定滿足n<k,即f-1(k)<k,得f-1(3k)<3k
∴3f-1(3k)<9k=f(f(3k))<f(3f(k)),得3f(k)>3f-1(3k),矛盾
②若f(3k)>3f(k),則類似①的證法可得3f(k)<3f-1(3k),矛盾
綜上所述,得f(3k)=3f(k)且f-1(3k)=3f-1(k)
∴f(2187)=f(3×729)=3f(729)=32f(243)=33f(81)=34f(27)=35f(9)=36f(3)=37f(1)=4374,
同理f(1944)=35×f(8)=243×15=3645
又∵f(f(k))=3k,∴f(k)的值域包括所有3的倍數(shù).
∵1944到2187間有242個(gè)數(shù),3645到4374之間有242個(gè)三的倍數(shù),
∴1944到2187之間全部值都是3的倍數(shù)
由此可得:f(2012)=3645+(2012-1944)×3=3849
點(diǎn)評(píng):本題給出抽象函數(shù),求f(2012)的值,著重考查了函數(shù)的單調(diào)性、抽象函數(shù)與整數(shù)討論等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(n)=2n+1(n∈N),P={1,2,3,4,5},Q={3,4,5,6,7},記
?
P
={n∈N|f(n)∈P},
?
Q
={n∈N|f(n)∈Q},則(
?
P
∩CN
?
Q
)∪(
?
Q
CN
?
P
)=(  )
A、{0,3}
B、{1,2}
C、{3,4,5}
D、{1,2,6,7}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f:N*→N*,f(x)是定義在正整數(shù)集上的增函數(shù),且f(f(k))=3k,則f(2012)=
3849
3849

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(n,p)=C2np(n,p∈N,p≤2n).?dāng)?shù)列{a(n,p)}滿足a(1,p)+a(2,p)+…+a(n,p)=f(n,p).
(1)求證:{a(n,2)}是等差數(shù)列;
(2)求證:f(n,1)+f(n,2)+…+f(n,n)=22n-1+
12
C2nn-1;
(3)設(shè)函數(shù)H(x)=f(n,1)x+f(n,2)x2+…+f(n,2n)x2n,試比較H(x)-H(a)與2n(1+a)2n-1(x-a)的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•安徽模擬)設(shè)f(x),g(x)是定義在R上的恒不為零的函數(shù),對(duì)任意x,y∈R,都有f(x)f(y)=f(x+y),g(x)+g(y)=g(x+y),若a1=
1
2
,an=f(n)(n∈N*)
,且b1=1,bn=g(n)(n∈N*),則數(shù)列{anbn}的前n項(xiàng)和為Sn為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(n)=(nN),那么f(n+1)-f(n)等于(  )

    A.                         B.

    C.             D.

      

查看答案和解析>>

同步練習(xí)冊(cè)答案