已知直線l經(jīng)過直線x-y=0與x+y-2=0的交點.
(1)若點(-1,0)到直線l的距離是2,求直線l的方程.
(2)求點(-1,0)到直線l的距離最大時的直線l的方程.
分析:(1)設(shè)出直線方程y=kx+b,先聯(lián)立兩條直線的解析式求出兩條直線的交點坐標(biāo)代入直線方程得①,然后利用點到直線的距離公式得到得到②,聯(lián)立①②即可求出k和b;
(2)先求出由(1,1)與(-1,0)確定的直線的斜率,由題意可知點(-1,0)到直線l的距離最大時即為(1,1)與(-1,0)確定的直線與直線l垂直,根據(jù)兩直線垂直時斜率乘積為-1得到k的值,然后代入①求出b,即可得到直線l的方程.
解答:解:(1)設(shè)直線l方程為y=kx+b,
聯(lián)立直線方程得:
x-y=0
x+y-2=0
解得
x=1
y=1
,所以直線l過(1,1),代入直線l得:k+b=1①
由點(-1,0)到直線l的距離是2得:
|-k+b|
k2+(-1)2
=2②,聯(lián)立①②解得:k=-
3
4
,b=
7
4
,所以直線l的方程為3x+4y-7=0;
(2)設(shè)出直線l的方程為y=kx+b,根據(jù)(1)得①,
點(-1,0)到直線l的距離最大即點(1,1)與點(-1,0)確定的直線與直線l垂直,
所以k=
-1
1-0
1-(-1)
=-2,代入①得b=3,
所以直線l的方程為2x+y-3=0.
點評:考查學(xué)生會根據(jù)兩直線方程求出交點坐標(biāo),會根據(jù)斜率和一點坐標(biāo)求直線的一般式方程.要求學(xué)生要會靈活運(yùn)用點到直線的距離公式求值,同時會利用兩直線垂直時斜率乘積為-1解決數(shù)學(xué)問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l經(jīng)過直線x+4y-2=0與直線2x+y+2=0的交點P,且垂直于直線x+2y-1=0.
(1)求直線l的方程;   
(2)求直線l與兩坐標(biāo)軸圍成的三角形的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年浙江省溫州中學(xué)高一(下)期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知直線l經(jīng)過直線x-y=0與x+y-2=0的交點.
(1)若點(-1,0)到直線l的距離是2,求直線l的方程.
(2)求點(-1,0)到直線l的距離最大時的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知直線l經(jīng)過直線x-y=0與x+y-2=0的交點.
(1)若點(-1,0)到直線l的距離是2,求直線l的方程.
(2)求點(-1,0)到直線l的距離最大時的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年北京市西城區(qū)普通校高二(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知直線l經(jīng)過直線x+4y-2=0與直線2x+y+2=0的交點P,且垂直于直線x+2y-1=0.
(1)求直線l的方程;   
(2)求直線l與兩坐標(biāo)軸圍成的三角形的面積S.

查看答案和解析>>

同步練習(xí)冊答案