如圖,在四棱錐P-ABCD中,PA⊥AD,AB∥CD,CD⊥AD,AD=CD=2AB=2,E,F(xiàn)分別為PC,CD的中點,DE=EC.
(1)求證:平面ABE⊥平面BEF;
(2)設PA=a,若平面EBD與平面ABCD所成銳二面角θ∈[
π
4
,
π
3
]
,求a的取值范圍.
分析:(1)由題目給出的條件,可得四邊形ABFD為矩形,說明AB⊥BF,再證明AB⊥EF,由線面垂直的判定可得AB⊥面BEF,再根據(jù)面面垂直的判定得到平面ABE⊥平面BEF;
(2)以A點為坐標原點,AB、AD、AP所在直線分別為x、y、z軸建立空間坐標系,利用平面法向量所成交與二面角的關系求出二面角的余弦值,根據(jù)給出的二面角的范圍得其余弦值的范圍,最后求解不等式可得a的取值范圍.
解答:證明:如圖,

(1)∵AB∥CD,CD⊥AD,AD=CD=2AB=2,F(xiàn)為CD的中點,
∴ABFD為矩形,AB⊥BF.
∵DE=EC,∴DC⊥EF,又AB∥CD,∴AB⊥EF
∵BF∩EF=F,∴AB⊥面BEF,又AE?面ABE,
∴平面ABE⊥平面BEF.
(2)解:∵DE=EC,∴DC⊥EF,又PD∥EF,AB∥CD,∴AB⊥PD
又AB⊥PD,所以AB⊥面PAD,AB⊥PA.
以AB所在直線為x軸,AD所在直線為y軸,AP所在直線為z軸建立空間坐標系,
則B(1,0,0),D(0,2,0),P(0,0,a),C(2,2,0),E(1,1,
a
2

BD
=(-1,2,0),
BE
=(0,1,
a
2
)

平面BCD的法向量
n1
=(0,0,1)
,
設平面EBD的法向量為
n2
=(x,y,z)

n2
BD
n2
BE
n2
BD
=0
n2
BE
=0
,即
-x+2y=0
y+
az
2
=0
,取y=1,得x=2,z=-
2
a

n2
=(2,1,-
2
a
)

所以cosθ=
2
a
4+1+
4
a2
=
2
5a2+4

因為平面EBD與平面ABCD所成銳二面角θ∈[
π
4
,
π
3
]
,
所以cosθ∈[
1
2
2
2
]
,即
2
5a2+4
∈[
1
2
,
2
2
]

2
5a2+4
1
2
得:-
2
15
5
≤a≤
2
15
5

2
5a2+4
2
2
得:a≤-
2
5
5
a≥
2
5
5

所以a的取值范圍是[
2
5
5
,
2
15
5
]
點評:本題考查了面面垂直的判定,考查了利用空間向量求二面角的大小,解答的關鍵是建立正確的空間坐標系,該題訓練了學生的計算能力,是中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)證明AD⊥PB;
(2)求二面角P-BD-A的正切值大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD為正方形,AB=4,PA=3,點A在PD上的射影為點G,點E在AB上,平面PEC⊥平面PDC.
(1)求證:AG∥平面PEC;
(2)求AE的長;
(3)求二面角E-PC-A的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求證:平面PBD⊥平面PAC.
(Ⅱ)求四棱錐P-ABCD的體積V.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,底面是邊長為a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E為PB中點
(1)求證;平面ACE⊥面ABCD;
(2)求三棱錐P-EDC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•武漢模擬)如圖,在四棱錐P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
(1)求二面角P-CD-A的平面角正切值,
(2)求A到面PCD的距離.

查看答案和解析>>

同步練習冊答案