分析 取AD,BC中點分別為E,F(xiàn),連接EF,AF,DF,求出EF,判斷三棱錐的外接球球心O在線段EF上,連接OA,OC,求出半徑,然后求解三棱錐的外接球的面積.
解答 解:取AD,BC中點分別為E,F(xiàn),連接EF,AF,DF,
由題意知AF⊥DF,AF=CF=3$\sqrt{3}$,
∴EF=$\frac{1}{2}$AD=$\frac{3\sqrt{6}}{2}$,
易知三棱錐的外接球球心O在線段EF上,
連接OA,OC,有R2=AE2+OE2,R2=DF2+OF2,
∴R2=($\frac{3\sqrt{6}}{2}$)2+OE2,R2=32+($\frac{3\sqrt{6}}{2}$-OE)2,
∴R=$\sqrt{15}$
∴三棱錐的外接球的面積為4πR2=60π.
故答案為60π
點評 本小題主要考查球的內(nèi)接幾何體的相關(guān)計算問題,對考生的空間想象能力與運算求解能力以及數(shù)形結(jié)合思想都提出很高要求,本題是一道綜合題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{6}$ | B. | $\sqrt{5}$ | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (3,4] | B. | [3,4] | C. | (-∞,0)∪(0,4] | D. | (-∞,-1)∪(0,4] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,2] | B. | ($\frac{1}{2}$,1) | C. | (1,2) | D. | [2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com