【題目】如圖1,已知直角梯形ABCD中,AB//DC,ABADECD的中點(diǎn),沿AE把△DAE折起到△PAE的位置(D折后變?yōu)?/span>P),使得PB=2,如圖2.

Ⅰ)求證:平面PAE⊥平面ABCE

Ⅱ)求點(diǎn)B到平面PCE的距離.

【答案】(1)見(jiàn)解析(2)

【解析】試題分析:的中點(diǎn),連接,,可知,為等腰直角三角形,證得,再由勾股定理證得,即可證明 利用等體積法,即可求點(diǎn)到平面的距離

解析:(Ⅰ)如圖,取AE的中點(diǎn)O,連接POOB,BE由于在平面圖形中,如題圖1,連接BD,BE,易知四邊形ABED為正方形, ∴在立體圖形中,△PAE,BAE為等腰直角三角形,

POAE,OBAE,PO=OB=

PB=2,,

POOB

,∴平面PO⊥平面ABCE

PO平面PAE,∴平面PAE⊥平面ABCD

Ⅱ)由(Ⅰ)可知,POAEOBAE,,故AE⊥平面POB

PB平面POB,AEPB,又BC//AE,BCPB

RtPBC中,

在△PEC中,PE=CE=2,

設(shè)點(diǎn)B到平面PCE的距離為d,由

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求證:函數(shù)有唯一零點(diǎn);

(2)若對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[2018·石家莊一檢]已知函數(shù)

(1)若,求函數(shù)的圖像在點(diǎn)處的切線方程;

(2)若函數(shù)有兩個(gè)極值點(diǎn),,且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】二進(jìn)制規(guī)定:每個(gè)二進(jìn)制數(shù)由若干個(gè)0、1組成,且最高位數(shù)字必須為1.若在二進(jìn)制中,是所有位二進(jìn)制數(shù)構(gòu)成的集合,對(duì)于,,表示對(duì)應(yīng)位置上數(shù)字不同的位置個(gè)數(shù).例如當(dāng)時(shí),當(dāng)時(shí).

(1)令,求所有滿足,且的個(gè)數(shù);

(2)給定,對(duì)于集合中的所有,求的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.

(1)在極坐標(biāo)系下,設(shè)曲線與射線和射線分別交于,兩點(diǎn),求的面積;

(2)在直角坐標(biāo)系下,直線的參數(shù)方程為為參數(shù)),直線與曲線相交于,兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線與橢圓相交于兩點(diǎn),與軸, 軸分別相交于點(diǎn)和點(diǎn),且,點(diǎn)是點(diǎn)關(guān)于軸的對(duì)稱點(diǎn), 的延長(zhǎng)線交橢圓于點(diǎn),過(guò)點(diǎn)分別做軸的垂線,垂足分別為.

(1)橢圓的左、右焦點(diǎn)與其短軸的一個(gè)端點(diǎn)是正三角形的三個(gè)頂點(diǎn),點(diǎn)在橢圓上,求橢圓的方程;

(2)當(dāng)時(shí),若點(diǎn)平分線段,求橢圓的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線a與平面所成角的為30o,直線b在平面內(nèi)且與b異面,若直線a與直線b所成的角為,則( )

A. 0<≤30 B. 0<≤90 C. 30≤≤90 D. 30≤≤180

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),在以原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為

1)求曲線的普通方程和直線的傾斜角;

2)設(shè)點(diǎn),直線和曲線交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,底面,為直角梯形,相交于點(diǎn),,,,三棱錐的體積為9.

(1)求的值;

(2)過(guò)點(diǎn)的平面平行于平面,與棱,,分別相交于點(diǎn),求截面的周長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案