(13分)如圖分別是正三棱臺ABC-A1B1C1的直觀圖和正視圖,O,O1分別是上下底面的中心,E是BC中點.
(1)求正三棱臺ABC-A1B1C1的體積;
(2)求平面EA1B1與平面A1B1C1的夾角的余弦;
(3)若P是棱A1C1上一點,求CP+PB1的最小值.
(1) ;
(2) ;(3) 的最小值為
【解析】本試題主要是考查了立體幾何中二面角的求解和棱臺體積公式的運用,以及線段和的最值問題的綜合運用。
(1)首先要求解三棱臺的體積,關(guān)鍵是高度和底面積,然后結(jié)合公式得到。
(2)建立適當?shù)目臻g直角坐標系,表示出點的坐標和向量的坐標,進而求解二面角的平面角的問題。
(3)結(jié)合三角形的知識,求解兩邊的和的最小值,要借助于余弦定理得到。
解:(1)由題意,正三棱臺高為……..2分
………..4分
(2)設分別是上下底面的中心,是中點,是中點.
如圖,建立空間直角坐標系. ,, ,,,,,
設平面的一個法向量,則即
取,取平面的一個法向
量,設所求角為
則 ……..8分
(3)將梯形繞旋轉(zhuǎn)到,使其與成平角
,由余弦定理得
即的最小值為 ……..13分
科目:高中數(shù)學 來源:江西省上饒市2012屆高三第二次模擬考試數(shù)學理科試題 題型:044
如圖分別是正三棱臺ABC-A1B1C1的直觀圖和正視圖,O,O1分別是上下底面的中心,E是BC中點.
(1)求正三棱臺ABC-A1B1C1的體積;
(2)求平面EA1B1與平面A1B1C1的夾角的余弦;
(3)若P是棱A1C1上一點,求CP+PB1的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年江西省高三4月月考數(shù)學文理合卷試卷(解析版) 題型:解答題
(理科)(本小題滿分12分)如圖分別是正三棱臺ABC-A1B1C1的直觀圖和正視圖,O,O1分別是上下底面的中心,E是BC中點.
(1)求正三棱臺ABC-A1B1C1的體積;
(2)求平面EA1B1與平面A1B1C1的夾角的余弦;
(3)若P是棱A1C1上一點,求CP+PB1的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年江西南昌10所省高三第二次模擬數(shù)學試卷(五)(解析版) 題型:解答題
(理科)如圖分別是正三棱臺ABC-A1B1C1的直觀圖和正視圖,O,O1分別是上下底面的中心,E是BC中點.
(1)求正三棱臺ABC-A1B1C1的體積;
(2)求平面EA1B1與平面A1B1C1的夾角的余弦;
(3) 若P是棱A1C1上一點,求CP+PB1的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com