9.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<$\frac{π}{2}}$)的圖象經(jīng)過三點(diǎn)(0,$\frac{1}{8}}$),(${\frac{5π}{12}$,0),(${\frac{11π}{12}$,0),且在區(qū)間($\frac{5π}{12}$,$\frac{11π}{12}}$)內(nèi)有唯一的最值,且為最小值.
(1)求出函數(shù)f(x)=Asin(ωx+φ)的解析式;
(2)在△ABC中,a,b,c分別是角A、B、C的對邊,若f($\frac{A}{2}}$)=$\frac{1}{4}$且bc=1,b+c=3,求a的值.

分析 (1)由題意可得函數(shù)的周期,利用周期公式可求ω,由$Asin({2×\frac{5}{12}π+φ})=0$,結(jié)合0<φ<$\frac{π}{2}}$,可得φ,
再由Asin$\frac{π}{6}$=$\frac{1}{8}$,可求A,從而可求函數(shù)f(x)=Asin(ωx+φ)的解析式;
(2)由$f({\frac{A}{2}})=\frac{1}{4}$,可求A,由余弦定理即可求得a的值.

解答 解:(1)由題意可得函數(shù)的周期$T=2({\frac{11}{12}π-\frac{5}{12}π})=π$,…(2分)
∴ω=2,又由題意當(dāng)$x=\frac{5}{12}π$時,y=0,
∴$Asin({2×\frac{5}{12}π+φ})=0$,
結(jié)合0<φ<$\frac{π}{2}}$,可得:φ=$\frac{π}{6}$,…4分
再由題意可得:當(dāng)x=0時,y=$\frac{1}{8}$,
∴Asin$\frac{π}{6}$=$\frac{1}{8}$,
∴A=$\frac{1}{4}$,
∴f(x)=$\frac{1}{4}$sin(2x+$\frac{π}{6}$)…6分
(2)∵$f({\frac{A}{2}})=\frac{1}{4}$,
∴sin(A+$\frac{π}{6}$)=1,A+$\frac{π}{6}$=2kπ+$\frac{π}{2}$,k∈Z,
∴A=2kπ+$\frac{π}{3}$,k∈Z,
∵A∈(0,π),
∴$A=\frac{π}{3}$,…(8分)
∵bc=1,b+c=3,
∴由余弦定理得:a2=b2+c2-2bccosA=b2+c2-bc=(b+c)2-3bc=9-3=6,
則$a=\sqrt{6}$.…(12分)

點(diǎn)評 本題主要考查了由y=Asin(ωx+φ)的部分圖象確定其解析式,正弦函數(shù)的圖象和性質(zhì)的應(yīng)用,考查了余弦定理在解三角形中的應(yīng)用,考查了數(shù)形結(jié)合思想和轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,已知四棱臺ABCD-A1B1C1D1的上、下底面分別是邊長為3和6的正方形,AA1=6,且A1A⊥底面ABCD,點(diǎn)P,Q分別在DD1,BC上,且$\overrightarrow{DP}$=$\frac{2}{3}$$\overrightarrow{D{D}_{1}}$,BQ=4.
(1)證明:PQ∥平面ABB1A1;
(2)求二面角P-QD-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.某產(chǎn)品的廣告費(fèi)用x與銷售額y的統(tǒng)計數(shù)據(jù)如下表:
廣告費(fèi)用x(萬元)1245
銷售額y(萬元)10263549
根據(jù)上表可得回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$的$\widehat$等于9,據(jù)此模型預(yù)報廣告費(fèi)用為6萬元時,銷售額約為(  )
A.54萬元B.55萬元C.56萬元D.57萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)為定義域為R的奇函數(shù),當(dāng)x>0時,f(x)=x+$\root{3}{x}$+1,求f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,PA切⊙O于點(diǎn)A,PBC是割線,弦CD∥AP,AD交BC于點(diǎn)E,F(xiàn)在CE上,且ED2=EF•EC.
(1)求證:∠EDF=∠P;
(2)若CE:EB=3:2,DE=6,EF=4,求PA的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)g(x)=sin22x的單調(diào)遞增區(qū)間是( 。
A.[$\frac{kπ}{2}$,$\frac{kπ}{2}$+$\frac{π}{4}$](k∈Z)B.[kπ,kπ+$\frac{π}{4}$](k∈Z)
C.[$\frac{kπ}{2}$+$\frac{π}{4}$,$\frac{kπ}{2}$+$\frac{π}{2}$](k∈Z)D.[kπ+$\frac{π}{4}$,kπ+$\frac{π}{2}$](k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知向量$\overrightarrow a$=(${2sin\frac{x}{4}$,cos$\frac{x}{2}}$),$\overrightarrow b$=(cos$\frac{x}{4}$,1),且f(x)=$\overrightarrow a$•$\overrightarrow b$.
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)求函數(shù)f(x)在區(qū)間[-π,π]上的最大值和最小值及取得最值時x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)i為虛數(shù)單位,則復(fù)數(shù)i2015的共軛復(fù)數(shù)為i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.不等式(x-3)(x+2)<0的解集為(  )
A.(-3,2)B.(-2,3)C.[-3,2)D.(-∞,-2)∪(3,+∞)

查看答案和解析>>

同步練習(xí)冊答案