設(shè)函數(shù)f(x)=
lnx
x
,x∈[1,4],則f(x)的最大值為
1
e
1
e
,最小值為
0
0
分析:先由求導(dǎo)公式和法則求出導(dǎo)函數(shù),再確定函數(shù)在[1,4]上的單調(diào)性,求求出函數(shù)的極值和端點(diǎn)值,從而確定函數(shù)的最大值和最小值.
解答:解:由題意得,f′(x)=
(lnx)′•x-lnx(x)′
x2
=
1-lnx
x2
,
由f′(x)=0可得,1-lnx=0,解得x=e,
∴當(dāng)x∈(0,e)時(shí),f′(x)>0;當(dāng)x∈(e,+∞)時(shí),f′(x)<0,
則函數(shù)f(x)在[1,e]上遞增,在(e,4]上遞減,
∴x=e時(shí),函數(shù)f(x)取得極大值,也是最大值為f(e)=
lne
e
=
1
e
,
又∵f(1)=0,f(4)=
ln4
4
>0,
∴函數(shù)f(x)的最小值是f(1)=0.
故答案為:
1
e
、0.
點(diǎn)評(píng):本題主要考查利用導(dǎo)數(shù)求函數(shù)的最值,解題的關(guān)鍵是利用導(dǎo)數(shù)確定函數(shù)在定義域上的單調(diào)性,再求出函數(shù)的極值和端點(diǎn)值,比較后再確定函數(shù)的最值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ln(x+a)+x2
(I)若當(dāng)x=-1時(shí),f(x)取得極值,求a的值,并討論f(x)的單調(diào)性;
(II)若f(x)存在極值,求a的取值范圍,并證明所有極值之和大于ln
e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(Ⅰ)設(shè)函數(shù)f(x)=ln(1+x)-
2x
x+2
,證明:當(dāng)x>0時(shí),f(x)>0;
(Ⅱ)從編號(hào)1到100的100張卡片中每次隨機(jī)抽取一張,然后放回,用這種方式連續(xù)抽取20次,設(shè)抽得的20個(gè)號(hào)碼互不相同的概率為P.證明:P<(
9
10
)
19
1
e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•楊浦區(qū)一模)設(shè)函數(shù)f(x)=ln(x2-x-6)的定義域?yàn)榧螦,集合B={x|
5x+1
>1}.請(qǐng)你寫出一個(gè)一元二次不等式,使它的解集為A∩B,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ln(x+a)+x2(a>
2
)
,
(1)若a=
3
2
,解關(guān)于x不等式f(e
x
-
3
2
)<ln2+
1
4
;
(2)證明:關(guān)于x的方程2x2+2ax+1=0有兩相異解,且f(m)和f(n)分別是函數(shù)f(x)的極小值和極大值(m,n為該方程兩根,且m>n).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ln(x+a)+2x2
(1)若當(dāng)x=-1時(shí),f(x)取得極值,求a的值;
(2)在(1)的條件下,方程ln(x+a)+2x2-m=0恰好有三個(gè)零點(diǎn),求m的取值范圍;
(3)當(dāng)0<a<1時(shí),解不等式f(2x-1)<lna.

查看答案和解析>>

同步練習(xí)冊(cè)答案