求函數(shù)f(x)=
2xx2+1
-2的極值.
分析:由題意對(duì)函數(shù)求導(dǎo),然后解f′(x)=0方程,得到x=-1或x=1,將(-∞,+∞)分為三個(gè)區(qū)間,最后通過列表得出導(dǎo)數(shù)在這三個(gè)區(qū)間的符號(hào),討論出函數(shù)的單調(diào)性,即可得出函數(shù)的最大最小值.
解答:解:由于函數(shù)f(x)的定義域?yàn)镽
f'(x)=
2(x2+1)-4x2
(x2+1)2
=
-2(x-1)(x+1)
(x2+1)2

令f'(x)=0得x=-1或x=1列表:
x (-∞,-1) -1 (-1,1) 1 (1,+∞)
f'(x) - 0 + 0 -
f(x) 極小值 極大值
由上表可以得到
當(dāng)x∈(-∞,-1)和x∈(1,+∞)時(shí)函數(shù)為減函數(shù)
當(dāng)x∈(-1,1)時(shí),函數(shù)為增函數(shù)
所以當(dāng)x=-1時(shí)函數(shù)有極小值為-3;當(dāng)x=1時(shí)函數(shù)有極大值為-1
點(diǎn)評(píng):本題考查了函數(shù)的求導(dǎo)及極值的概念,其基本思路是利用導(dǎo)函數(shù)的零點(diǎn)求出可能的極值點(diǎn),再利用表格討論導(dǎo)數(shù)的正負(fù),從而求其單調(diào)區(qū)間,最后得出函數(shù)的極值,這是典型的化歸思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

利用單調(diào)性的定義證明:函數(shù)f(x)=
2
x-1
在(1,+∞)上是減函數(shù),并求函數(shù)f(x)=
2
x-1
,x∈[2,6]的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)f(x)=
2
x-2
|2x-4|+4
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了求函數(shù)f(x)=2x-x2的一個(gè)零點(diǎn),某同學(xué)利用計(jì)算器,得到自變量x和函數(shù)值f(x)的部分對(duì)應(yīng)值(精確到0.01)如下表所示:
x 0.6 1.0 1.4 1.8 2.2 2.6 3.0
f(x) 1.16 1.00 0.68 0.24 -0.24 -0.70 -1.00
則函數(shù)f(x)的一個(gè)零點(diǎn)所在區(qū)間是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={y|y=m2+1,-1≤m≤
2
},求函數(shù)f(x)=2x+2-3•4x,x∈A的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•湖南模擬)選做題(請(qǐng)考生在第16題的三個(gè)小題中任選兩題作答,如果全做,則按前兩題記分,要寫出必要的推理與演算過程)
(1)如圖,已知Rt△ABC的兩條直角邊BC,AC的長分別為3cm,4cm,以AC為直徑作圓與斜邊AB交于點(diǎn)D,試求BD的長.
(2)已知曲線C的參數(shù)方程為
x=1+cosθ
y=sinθ
(θ為參數(shù)),求曲線C上的點(diǎn)到直線x-y+1=0的距離的最大值.
(3)若a,b是正常數(shù),a≠b,x,y∈(0,+∞),則
a2
x
+
b2
y
(a+b)2
x+y
,當(dāng)且僅當(dāng)
a
x
=
b
y
時(shí)上式取等號(hào).請(qǐng)利用以上結(jié)論,求函數(shù)f(x)=
2
x
+
9
1-2x
(x∈0,
1
2
)的最小值.

查看答案和解析>>

同步練習(xí)冊答案