如圖,點(diǎn)P在雙曲線
x2
a2
-
y2
b2
=1的右支上,F(xiàn)1,F(xiàn)2分別是雙曲線的左右焦點(diǎn),|PF2|=|F1F2|,直線PF1與圓x2+y2=a2相切,則雙曲線的離心率e( 。
A、
4
3
B、
5
3
C、
3
D、2
考點(diǎn):雙曲線的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:先設(shè)PF1與圓相切于點(diǎn)M,利用|PF2|=|F1F2|,及直線PF1與圓x2+y2=a2相切,可得幾何量之間的關(guān)系,從而可求雙曲線的離心率的值.
解答: 解:設(shè)PF1與圓相切于點(diǎn)M,因?yàn)閨PF2|=|F1F2|,所以△PF1F2為等腰三角形,
所以|F1M|=
1
4
|PF1|,
又因?yàn)樵谥苯恰鱂1MO中,|F1M|2=|F1O|2-a2=c2-a2,所以|F1M|=b=
1
4
|PF1|①
又|PF1|=|PF2|+2a=2c+2a   ②,
c2=a2+b2 ③
由①②③解得
c
a
=
5
3

故選:B.
點(diǎn)評(píng):本題考查直線與圓相切,考查雙曲線的定義,考查雙曲線的幾何性質(zhì),屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)a1,a2,a3不全為零,正數(shù)x,y滿足x+y=2,設(shè)
xa1a2+ya2a3
a12+a22+a32
的最大值為M=f(x,y),則M的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a、b、c分別為△ABC三個(gè)內(nèi)角A、B、C的對(duì)邊,若(c-b)sinC=asinA-bsinB,則∠A=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|1<x<5},B={x|x2-2x-3≤0},則A∩(∁RB)=( 。
A、(1,5)
B、(3,5)
C、(1,3)
D、(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平面區(qū)域
y≥x
y≥-
3
x
x2+y2≤2
的面積是( 。
A、
12
B、
6
C、
12
D、
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
,
b
滿足|
b
|=2|
a
|,
b
-
a
與2
a
+
b
的夾角為
π
3
,則
a
,
b
的夾角是(  )
A、
π
6
B、
π
3
C、
3
D、
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x、y、z是正數(shù),且x2+4y2+9z2=4,2x+4y+3z=6,則x+y+z等于(  )
A、
20
9
B、
11
5
C、
6
5
D、
11
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|x≤6,x∈N},B={x|x-3>0,x∈R},則A∩B=( 。
A、{4,5,6}
B、{0,4,5,6}
C、{3,4,5,6}
D、∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a:b:c=1:2:4,則雙曲線ax2-by2=c的離心率為( 。
A、
2
2
B、
6
2
C、
2
D、
6

查看答案和解析>>

同步練習(xí)冊答案