設(shè)復(fù)數(shù)z滿足z•(1+i)=2i+1(i為虛數(shù)單位),則復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于(  )
A、第一象限B、第二象限
C、第三象限D、第四象限
考點(diǎn):復(fù)數(shù)的代數(shù)表示法及其幾何意義
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:利用分的代數(shù)形式的混合運(yùn)算求出復(fù)數(shù)z,得到復(fù)數(shù)的對(duì)應(yīng)點(diǎn),判斷所在象限即可.
解答: 解:復(fù)數(shù)z滿足z•(1+i)=2i+1(i為虛數(shù)單位),
∴z=
1+2i
1+i
=
(1+2i)(1-i)
(1+i)(1-i)
=
3+i
2
=
3
2
+
1
2
i.
復(fù)數(shù)對(duì)應(yīng)點(diǎn)(
3
2
1
2
)在第一象限,
故選:A.
點(diǎn)評(píng):本題考查復(fù)數(shù)的代數(shù)形式的混合運(yùn)算,復(fù)數(shù)的幾何意義,基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:
lim
n→∞
C
0
2n
+
C
2
2n
+
C
4
2n
+…+
C
2n
2n
1-4n
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知回歸直線的斜率的估計(jì)值為1.4,樣本點(diǎn)的中心為(5,9),則回歸直線方程為(  )
A、
?
y
=1.4x+5
B、
?
y
=1.4x+5
C、
?
y
=1.4x+2
D、
?
y
=2x+1.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,a2=2,a3+a4=12,求:數(shù)列{an}的通項(xiàng)公式及前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tan(α+
π
4
)=
1
3
,α∈(0,π),則sinα=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn)求值:
(1)(
9
4
)
1
2
-(-9.6)0-(
27
8
)-
2
3
+(1.5)-2
;
(2)(log43+log83)(log32+log92).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)(x∈R)滿足f(x+π)=f(x)+sinx,0≤x<π時(shí),f(x)=0,則f(
11π
6
)
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
a•2x,x≥0
2-x,x<0
(a∈R).若f[f(-1)]=1,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
lg(x+3)
x
的定義域?yàn)?div id="t4cc1a1" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

同步練習(xí)冊(cè)答案