Processing math: 100%
2.圓x2+y2+2x+y=0的半徑是( �。�
A.54B.52C.34D.32

分析 化圓的方程為標準方程,即可求出半徑.

解答 解:把圓x2+y2+2x+y=0化標準方程為:x+12+y+122=54,
則圓x2+y2+2x+y=0的半徑是:52
故選:B.

點評 本題主要考查圓的標準方程,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

12.已知集合A={y|y=x2-2x+3},B={x|y=4x2},則A∩B=( �。�
A.[-2,0]B.{2}C.[0,2]D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.一個正方體兩個平面分別截去一部分后,剩余幾何體的三視圖如圖所示,則該幾何體的體積是( �。�
A.27B.18C.9D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知M為△ABC的中線AD的中點,過點M的直線分別交兩邊AB、AC于點P、Q,設
AP=xAB,AQ=yAC,記y=f(x).
(1)求函數(shù)y=f(x)的表達式;
(2)設g(x)=x3+3a2x+2a,x∈[0,1].若對任意x1∈[13,1],總存在x2∈[0,1],使得f(x1)=g(x2)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.函數(shù)f(x)=2sinxπ4+22sin2x2+1的最大值為M,最小值為m,則M+m等于( �。�
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知△ABC的角A,B,C的對邊分別為a,b,c,且(b+c-a)(b-c+a)=a2+c2-b2,則角B的大小為( �。�
A.30°B.45°C.60°D.120°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知△ABC是等腰直角三角形.|AB|=|AC|=1,BC=4BD,
(1)求AD•(AB-AC
(2)若點M在線段BC上,求AMMD的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.若正項數(shù)列{an}滿足:an+1an=an+1-an(a∈N*),則稱此數(shù)列為“比差等數(shù)列”.
(1)請寫出一個“比差等數(shù)列”的前3項的值;
(2)設數(shù)列{an}是一個“比差等數(shù)列”
(i)求證:a2≥4;
(ii)記數(shù)列{an}的前n項和為Sn,求證:對于任意n∈N*,都有Snn2+5n42

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.如圖,四邊形ABCD中,∠ABC=∠C=120°,AB=4,BC=CD=2,則該四邊形的面積是53

查看答案和解析>>

同步練習冊答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌ら崫銉︽毄濞寸姵鑹鹃埞鎴炲箠闁稿﹥顨嗛幈銊р偓闈涙啞瀹曞弶鎱ㄥ璇蹭壕闂佺粯渚楅崰娑氱不濞戞ǚ妲堟繛鍡樺姈椤忕喖姊绘担鑺ョ《闁革綇绠撻獮蹇涙晸閿燂拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐礃椤曆囧煘閹达附鍋愰柛娆忣槹閹瑧绱撴担鍝勵€岄柛銊ョ埣瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷