已知,g(x)=ex-x2+2ax-1,(x∈R,a為實數(shù)),y=f(x)的圖象與y軸交于點,且在該點處切線的斜率為-2.
(I)若點,點P是函數(shù)y=f(x)圖象上一點,Q(x,y)是PA的中點,當時,求x的值;
(II)當a>1+ln2時,試問:是否存在曲線y=f(x)與y=g(x)的公切線?并證明你的結(jié)論.
【答案】分析:(I)根據(jù)在該點處切線的斜率為-2建立等式關(guān)系可求出ω、θ從而求出f(x),利用中點坐標公式建立等式關(guān)系,即可求出x的值;
(II)先求出曲線f(x)的切線斜率的取值范圍,然后求出曲線y=g(x)的切線斜率的取值范圍,看其是否有交集,從而判定是否存在曲線y=f(x)與y=g(x)的公切線.
解答:解:(I)由題意可知可得:

設(shè)P點坐標為,已知
所以Q(x,y)滿足又由得到t=π或
所以
(II)因為所以曲線f(x)的切線斜率k1∈[-4,4]
又g′(x)=ex-2x+2a
∴g″(x)=ex-2
∴令g″(x)=0可得x=ln2處g′(x)取到最小值g′(ln2)=eln2-2ln2+2a>2-2ln2+2+2ln2=4
所以曲線y=g(x)的切線斜率k2>4,故不存在兩曲線的共切線.
點評:本題主要考查了利用導數(shù)研究在某點處的切線,以及導數(shù)的幾何意義和公切線問題,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知:g(x)=
ex,x≤0
lnx,x>0
,則g(g(-
1
3
))=
 

查看答案和解析>>

科目:高中數(shù)學 來源:2010年湖南省邵陽市洞口三中高考數(shù)學模擬試卷(理科)(解析版) 題型:解答題

已知,g(x)=ex-e2-x+f(x),
(1)若f(x)在處取得極值,試求c的值和f(x)的單調(diào)增區(qū)間;
(2)如圖所示,若函數(shù)y=f(x)的圖象在[a,b]連續(xù)光滑,試猜想拉格朗日中值定理:即一定存在c∈(a,b),使得,利用這條性質(zhì)證明:函數(shù)y=g(x)圖象上任意兩點的連線斜率不小于2e-4.

查看答案和解析>>

科目:高中數(shù)學 來源:2008-2009學年廣東省中山市高三學業(yè)質(zhì)量監(jiān)測數(shù)學試卷(理科)(解析版) 題型:解答題

已知,g(x)=ex-e2-x+f(x),
(1)若f(x)在處取得極值,試求c的值和f(x)的單調(diào)增區(qū)間;
(2)如圖所示,若函數(shù)y=f(x)的圖象在[a,b]連續(xù)光滑,試猜想拉格朗日中值定理:即一定存在c∈(a,b),使得,利用這條性質(zhì)證明:函數(shù)y=g(x)圖象上任意兩點的連線斜率不小于2e-4.

查看答案和解析>>

科目:高中數(shù)學 來源:2008-2009學年廣東省中山市高三學業(yè)質(zhì)量監(jiān)測數(shù)學試卷(文科)(解析版) 題型:解答題

已知,g(x)=ex-e2-x+f(x),
(1)若f(x)在處取得極值,試求c的值和f(x)的單調(diào)增區(qū)間;
(2)如圖所示,若函數(shù)y=f(x)的圖象在[a,b]連續(xù)光滑,試猜想拉格朗日中值定理:即一定存在c∈(a,b),使得,利用這條性質(zhì)證明:函數(shù)y=g(x)圖象上任意兩點的連線斜率不小于2e-4.

查看答案和解析>>

同步練習冊答案