在等式cos2x=2cos2x-1(x∈R)的兩邊求導,得:,由求導法則,得(-sin2x)·2=4cosx·(-sinx),化簡得等式:sin2x=2cosx·sinx.
(1)利用上題的想法(或其他方法),結合等式(x∈R,正整數(shù)n≥2),證明:.
(2)對于正整數(shù)n≥3,求證:
(i);
(ii);
(iii).
科目:高中數(shù)學 來源:安徽省安慶市示范高中五校2010屆高三第一次聯(lián)考數(shù)學試題 題型:044
請先閱讀:在等式cos2x=2cos2x-1(x∈R)的兩邊求導,得:
,
由求導法則,得(-sin2x)·2=4cosx·(-sinx),化簡得等式:sin2x=2cosx·sinx.
(1)利用上題的想法(或其他方法),試由等式(1+x)n=(x∈R,正整數(shù)n≥2),證明:n[(1+x)n-1-1]=.
(2)對于正整數(shù)n≥3,求證:
(i)=0;
(ii)=0;
(iii).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com