14.已知直線l經(jīng)過(guò)直線2x+y+5=0與x-2y=0的交點(diǎn),圓C1:x2+y2-2x-2y-4=0與圓C2:x2+y2+6x+2y-6=0相較于A、B兩點(diǎn).
(1)若點(diǎn)P(5,0)到直線l的距離為4,求l的直線方程;
(2)若直線l與直線AB垂直,求直線l方程.

分析 (1)設(shè)出直線的交點(diǎn)系方程,代入點(diǎn)到直線距離公式,求出λ值,可得l的直線方程;
(2)直線l與直線AB垂直,即直線l與C1C2平行,由此求出λ值,可得l的直線方程;

解答 (本小題滿分12分)
解:(1)設(shè)直線l的方程為:2x+y-5+λ(x-2y)=0    即:(2+λ)x+(1-2λ)y-5=0
由題意:$\frac{|5(2+λ)-5|}{\sqrt{{(2+λ)}^{2}+{(1-2λ)}^{2}}}$=3
整理得:2λ2-5λ+2=0
(2λ-1)( λ-2)=0
∴λ=$\frac{1}{2}$或λ=2
∴直線l的方程為:2x+y-5+$\frac{1}{2}$(x-2y)=0或2x+y-5+2(x-2y)=0
即:x=2或4x-3y-5=0…(6分)
(2)圓C1:x2+y2-2x-4y-4=0,即(x-1)2+(y-2)2=9,
故圓心坐標(biāo)為:C1(1,2)
圓C2:x2+y2+6x+2y-6=0 即(x+3)2+(y+1)2=16,
故圓心坐標(biāo)為:C2(-3,-1)
直線C1C2與AB垂直,所以直線l與C1C2平行,可知:l的斜率為k=$\frac{2+1}{1+3}$=$\frac{3}{4}$
由題意:$\frac{λ+2}{2λ-1}$=$\frac{3}{4}$   解得:λ=$\frac{11}{2}$
∴直線l的方程為:2x+y-5+$\frac{11}{2}$ (x-2y)=0
即:3x-4y-2=0.…(12分)

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是直線與圓的位置關(guān)系,直線的交點(diǎn)系方程,點(diǎn)到直線的距離公式,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.在平面直角坐標(biāo)系xoy中,O為坐標(biāo)原點(diǎn),已知點(diǎn)Q(1,2),P是動(dòng)點(diǎn),且三角形POQ的三邊所在直線的斜率滿足$\frac{1}{{{k_{OP}}}}+\frac{1}{{{k_{OQ}}}}=\frac{1}{{{k_{PQ}}}}$.
(1)求點(diǎn)P的軌跡C的方程;
(2)過(guò)F作傾斜角為60°的直線L,交曲線C于A,B兩點(diǎn),求△AOB的面積;
(3)過(guò)點(diǎn)D(1,0)任作兩條互相垂直的直線l1,l2,分別交軌跡C于點(diǎn)A,B和M,N,設(shè)線段AB,MN的中點(diǎn)分別為E,F(xiàn).求證:直線EF恒過(guò)一定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點(diǎn),作EF⊥PB交PB于點(diǎn)F.建立適當(dāng)?shù)目臻g直角坐標(biāo)系,利用空間向量方法解答以下問(wèn)題:
(1)求證:PA∥平面EDB;
(2)求二面角F-DE-B的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點(diǎn).
(1)求PB和平面PAD所成的角的大。
(2)求二面角A-PD-C的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,長(zhǎng)方體ABCD-A1B1C1D1中,AB=AD=1,AA1=2,點(diǎn)P為DD1的中點(diǎn).
(Ⅰ)求證:直線BD1∥平面PAC;
(Ⅱ)求證:平面PAC⊥平面BDD1;
(Ⅲ)求直線PB1與平面PAC所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知圓C:x2+y2-8y+12=0,直線l:ax+y+2a=0.
(1)當(dāng)a為何值時(shí),直線l與圓C相切;
(2)若直線l過(guò)點(diǎn)(0,2)與圓C相交于點(diǎn)A、B,求線段AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知直線的點(diǎn)斜式方程是$y-2=-\sqrt{3}(x-1)$,那么此直線的傾斜角為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知拋物線C:y2=4x.點(diǎn)P是其準(zhǔn)線與x軸的交點(diǎn),過(guò)點(diǎn)P的直線L與拋物線C交于A,B兩點(diǎn).
(1)當(dāng)線段AB的中點(diǎn)在直線x=7上,求直線L的方程;
(2)設(shè)F為拋物線C的焦點(diǎn),當(dāng)A為線段PB的中點(diǎn)時(shí),求△FAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知平面直角坐標(biāo)系xoy中,點(diǎn)P(1,0),曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=2cosφ\(chéng)\ y=sinφ\(chéng)end{array}\right.$(φ為參數(shù)).以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,傾斜角為α的直線l的極坐標(biāo)方程為ρsin(α-θ)=sinα.
(1)求曲線C的普通方程和直線l的直角坐標(biāo)方程;
(2)若曲線C與直線l交于M,N兩點(diǎn),且$|{\frac{1}{{|{PM}|}}-\frac{1}{{|{PN}|}}}|=\frac{1}{3}$,求α的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案