已知橢圓C:.
(1)求橢圓C的離心率;
(2)設(shè)O為原點(diǎn),若點(diǎn)A在直線,點(diǎn)B在橢圓C上,且,求線段AB長(zhǎng)度的最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,F(xiàn)是中心在原點(diǎn)、焦點(diǎn)在x軸上的橢圓C的右焦點(diǎn),直線l:x=4是橢圓C的右準(zhǔn)線,F(xiàn)到直線l的距離等于3.
(1)求橢圓C的方程;
(2)點(diǎn)P是橢圓C上動(dòng)點(diǎn),PM⊥l,垂足為M.是否存在點(diǎn)P,使得△FPM為等腰三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C:+=1(a>b>0)的離心率為,橢圓短軸的一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為.
(1)求橢圓C的方程;
(2)已知?jiǎng)又本y=k(x+1)與橢圓C相交于A,B兩點(diǎn).
①若線段AB中點(diǎn)的橫坐標(biāo)為-,求斜率k的值;
②已知點(diǎn)M(-,0),求證:·為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的一個(gè)焦點(diǎn)為,離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若動(dòng)點(diǎn)為橢圓外一點(diǎn),且點(diǎn)到橢圓的兩條切線相互垂直,求點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè),分別是橢圓的左右焦點(diǎn),M是C上一點(diǎn)且與x軸垂直,直線與C的另一個(gè)交點(diǎn)為N.
(1)若直線MN的斜率為,求C的離心率;
(2)若直線MN在y軸上的截距為2,且,求a,b.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的離心率為,為橢圓在軸正半軸上的焦點(diǎn),、兩點(diǎn)在橢圓上,且,定點(diǎn).
(1)求證:當(dāng)時(shí);
(2)若當(dāng)時(shí)有,求橢圓的方程;
(3)在(2)的橢圓中,當(dāng)、兩點(diǎn)在橢圓上運(yùn)動(dòng)時(shí),試判斷 是否有最大值,若存在,求出最大值,并求出這時(shí)、兩點(diǎn)所在直線方程,若不存在,給出理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的離心率為,點(diǎn)在橢圓上.
(1)求橢圓C的方程;
(2)設(shè)橢圓的左右頂點(diǎn)分別是A、B,過(guò)點(diǎn)的動(dòng)直線與橢圓交于M,N兩點(diǎn),連接AN、BM相交于G點(diǎn),試求點(diǎn)G的橫坐標(biāo)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,橢圓上的點(diǎn)M與橢圓右焦點(diǎn)的連線與x軸垂直,且OM(O是坐標(biāo)原點(diǎn))與橢圓長(zhǎng)軸和短軸端點(diǎn)的連線AB平行.
(1)求橢圓的離心率;
(2)過(guò)且與AB垂直的直線交橢圓于P、Q,若的面積是20,求此時(shí)橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C過(guò)點(diǎn),兩焦點(diǎn)為、,是坐標(biāo)原點(diǎn),不經(jīng)過(guò)原點(diǎn)的直線與該橢圓交于兩個(gè)不同點(diǎn)、,且直線、、的斜率依次成等比數(shù)列.
(1)求橢圓C的方程;
(2)求直線的斜率;
(3)求面積的范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com