12.已知a,b∈R*,且ab2=4,則a+b的最小值為3.

分析 由條件可得a+b=a+$\frac{1}{2}$b+$\frac{1}{2}$b,由a+b+c≥3$\root{3}{abc}$(a=b=c取得等號),即可得到所求最小值.

解答 解:由a,b∈R+且ab2=4,
則a+b=a+$\frac{1}{2}$b+$\frac{1}{2}$b≥3$\root{3}{a•\frac{1}{2}b•\frac{1}{2}b}$=3,
當且僅當a=$\frac{1}{2}$b,即有b=2,a=1時,a+b取得最小值3,
故答案為:3.

點評 本題考查最值的求法,注意運用變形的技巧和三元均值不等式,考查運算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.當x=a時,函數(shù)y=ln(x+2)-x取到極大值b,則ab等于-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在△ABC中,已知c=1,A=60°,C=45°,則△ABC的面積為(  )
A.$\frac{{5\sqrt{3}}}{4}$B.$\frac{{3-\sqrt{3}}}{8}$C.$\frac{{3+\sqrt{3}}}{8}$D.$\frac{{3\sqrt{3}}}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=Asin(ωx+φ)+B(A>0,0<ω<2,|φ|<$\frac{π}{2}$)的一系列對應(yīng)值如下表:
x-$\frac{π}{6}$$\frac{π}{3}$$\frac{5π}{6}$$\frac{4π}{3}$$\frac{11π}{6}$$\frac{7π}{3}$$\frac{17π}{6}$
y-1131-113
(1)根據(jù)表格提供的數(shù)據(jù)求函數(shù)y=f(x)的解析式;
(2)求函數(shù)f(x) 的單調(diào)遞增區(qū)間;
(3)若對任意的實數(shù)a,函數(shù)y=f(kx)(k>0),x∈(a,a+$\frac{2π}{3}$]的圖象與直線y=1有且僅有兩個不同的交點,又當x∈[0,$\frac{π}{3}$]時,方程f(kx)=m恰有兩個不同的解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.曲線y=x2和曲線y2=x圍成的圖形面積是$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)y=cosx在其定義域上的奇偶性是( 。
A.奇函數(shù)B.偶函數(shù)C.既奇且偶的函數(shù)D.非奇非偶的函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列說法正確的是( 。
A.若a>b,(a,b∈R),則a+2i>b+2i
B.數(shù)列a1,a2,a3,…,a7中,恰好有5個a,2個b,(a≠b),則不同的數(shù)列共有23個
C.半徑為r的圓的面積S=πr2,則單位圓的面積S=π,此推理是演繹推理
D.若$\underset{lim}{△x→0}$$\frac{f(1-△x)-f(1)}{△x}$=a,則f′(1)=a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知橢圓$\frac{x^2}{4}$+y2=1的左右焦點分別為F1,F(xiàn)2,過F1作直線交橢圓于A,B兩點,則△ABF2的周長為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)全集U={1,2,3,4,5,6,7},M={2,3,4,5,6},N={1,4,5},則(∁UM)∩N等于( 。
A.{1,2,4,5,7}??B.{1,4,5}??C.{1}D.{1,4}

查看答案和解析>>

同步練習(xí)冊答案