設(shè)函數(shù)f(x)=
12
x2-(a2-2a-1)x+3(x∈R)
,
(1)當a=2,-2≤x≤2時,求f(x)的值域;
(2)若f(x)在x∈(-1,2)上是單調(diào)函數(shù),求實數(shù)a的范圍.
分析:(1)當a=2,-2≤x≤2時,f(x)=
1
2
x2+x+3
=
1
2
(x+1)2+
5
2
,由此能求出f(x)的值域.
(2)f(x)=
1
2
x2-(a2-2a-1)x+3(x∈R)
的對稱軸方程是x=a2-2a-1,由f(x)在x∈(-1,2)上是單調(diào)函數(shù),知a2-2a-1≥2或a2-2a-1≤-1,由此能求出實數(shù)a的范圍.
解答:解:(1)當a=2,-2≤x≤2時,
f(x)=
1
2
x2+x+3
=
1
2
(x+1)2+
5
2
,
∴當x=-1時,f(x)min=
5
2
,
當x=2時,f(x)max=7,
∴當a=2,-2≤x≤2時,f(x)的值域是[
5
2
,7
].
(2)∵f(x)=
1
2
x2-(a2-2a-1)x+3(x∈R)
的對稱軸方程是x=a2-2a-1,
f(x)在x∈(-1,2)上是單調(diào)函數(shù),
∴a2-2a-1≥2或a2-2a-1≤-1,
解得a≤-1,或0≤a≤2,或a≥3.
即實數(shù)a的范圍是(-∞,-1]∪[0,2]∪[3,+∞).
點評:本題考查函數(shù)的值域和實數(shù)a的取值范圍,是基礎(chǔ)題.解題時要認真審題,注意二次函數(shù)的性質(zhì)和配方法的靈活運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=
(
1
2
)x-7 (x<0)
x
 
(x≥0)
,若f(a)<1
,則實數(shù)a的取值范圍是( 。
A、(-∞,-3)
B、(1,+∞)
C、(-3,1)
D、(-∞,-3)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=
(
1
2
)x-1,x≥0
x2,x<0
與函數(shù)g(x)的圖象關(guān)于直線y=x對稱,則當x>0時,g(x)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=
(
1
2
)
x
 (x≤0)
x
1
2
     (x>0)
,若f(x0)>2,則x0的取值范圍是( 。
A、(-1,4)
B、(-1,+∞)
C、(4,+∞)
D、(-∞,-1)∪(4,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=
(
1
2
)x-3(x≤0)
x
1
2
(x>0)
,已知f(a)>1,則實數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=
(
1
2
)x+1(x<-1)
-x2+2(-1≤x≤2)
3x-8(x>2)

(Ⅰ)請在下列直角坐標系中畫出函數(shù)f(x)的圖象;
(Ⅱ)根據(jù)(Ⅰ)的圖象,試分別寫出關(guān)于x的方程f(x)=t有2,3,4個實數(shù)解時,相應的實數(shù)t的取值范圍;
(Ⅲ)記函數(shù)g(x)的定義域為D,若存在x0∈D,使g(x0)=x0成立,則稱點(x0,x0)為函數(shù)g(x)圖象上的不動點.試問,函數(shù)f(x)圖象上是否存在不動點,若存在,求出不動點的坐標,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案