(本小題滿分13分)如圖所示,四棱錐中,底面是邊長(zhǎng)為2的菱形,是棱上的動(dòng)點(diǎn).
(Ⅰ)若是的中點(diǎn),求證://平面;
(Ⅱ)若,求證:;
(III)在(Ⅱ)的條件下,若,求四棱錐的體積.
(1)根據(jù)底面為菱形, 所以為的中點(diǎn).
因?yàn)?是的中點(diǎn),所以從而得證。
(2)根據(jù)已知的條件得到平面,然后結(jié)合線面垂直的性質(zhì)定理得到結(jié)論
(3)
解析試題分析:(Ⅰ)證明:連結(jié),交于.
因?yàn)榈酌?img src="http://thumb.zyjl.cn/pic5/tikupic/65/1/nt9ig.png" style="vertical-align:middle;" />為菱形, 所以為的中點(diǎn).
因?yàn)?是的中點(diǎn),所以 ,
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/be/7/mo6bt3.png" style="vertical-align:middle;" />平面,平面,
所以平面. …………………4分
(Ⅱ)證明:因?yàn)榈酌?img src="http://thumb.zyjl.cn/pic5/tikupic/65/1/nt9ig.png" style="vertical-align:middle;" />為菱形,
所以,為的中點(diǎn).
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ac/e/aczfy1.png" style="vertical-align:middle;" />,所以 .
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/0c/0/ktvxz3.png" style="vertical-align:middle;" />,所以 平面.因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/c2/3/16iie4.png" style="vertical-align:middle;" />平面,
所以 . ………………………………8分
(Ⅲ)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/53/e/10c8t2.png" style="vertical-align:middle;" />,所以△為等腰三角形 .
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/dd/7/bkrns.png" style="vertical-align:middle;" />為的中點(diǎn),所以.
由(Ⅱ)知,且,
所以平面,即為四棱錐的高.
因?yàn)樗倪呅问沁呴L(zhǎng)為2的菱形,且,
所以.
所以 . ……………12分
考點(diǎn):線面平行,線線垂直,體積的問題
點(diǎn)評(píng):解決該試題的關(guān)鍵是利用空間的線面平行和線面垂直的性質(zhì)定理和判定定理來(lái)證明平行與垂直同時(shí)根據(jù)等體積法來(lái)求解體積。屬于中檔題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,正方形與梯形所在的平面互相垂直,,∥,,點(diǎn)在線段上.
(I)當(dāng)點(diǎn)為中點(diǎn)時(shí),求證:∥平面;
(II)當(dāng)平面與平面所成銳二面角的余弦值為時(shí),求三棱錐 的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,三棱錐P-ABC中,PC平面ABC,PC=AC=2, AB=BC,D是PB上一點(diǎn),且CD平面PAB
(1)求證:AB平面PCB;
(2)求異面直線AP與BC所成角的大。
(3)求二面角C-PA-B 的大小的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分10分)如圖,四邊形ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中點(diǎn).
求證:(1) PA∥平面BDE .
(2)平面PAC平面BDE .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
如圖,在四棱錐中,平面平面,∥是正三角形,已知
(1) 設(shè)是上的一點(diǎn),求證:平面平面;
(2) 求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
在四棱柱中,底面是直角梯形,AB∥CD,∠ABC=,AB=PB=PC=BC=2CD=2,平面PBC⊥平面ABCD
(1)求證:AB⊥平面PBC
(2)求三棱錐C-ADP的體積
(3)在棱PB上是否存在點(diǎn)M使CM∥平面PAD?
若存在,求的值。若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題15分)如圖,在四棱錐中,底面,, ,, ,是的中點(diǎn)。
(Ⅰ)證明:;
(Ⅱ)證明:平面;
(Ⅲ)求二面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題12分) 如圖四棱柱ABCD-A1B1C1D1的底面ABCD為正方形,側(cè)棱與底邊長(zhǎng)均為a,
且∠A1AD=∠A1AB=60°。
①求證四棱錐 A1-ABCD為正四棱錐;
②求側(cè)棱AA1到截面B1BDD1的距離;
③求側(cè)面A1ABB1與截面B1BDD1的銳二面角大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分10分) 如圖,P—ABCD是正四棱錐,是正方體,其中
(1)求證:;
(2)求平面PAD與平面所成的銳二面角的余弦值;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com