已知函數(shù)
(1)求函數(shù)在區(qū)間上的最大、最小值;
(2)求證:在區(qū)間上,函數(shù)的圖象在函數(shù)的圖象的下方.
(1)函數(shù)在區(qū)間上的最大值為,最小值為
(2)要證明在區(qū)間上,函數(shù)的圖象在函數(shù)的圖象的下方,只要證明前者的最小值大于后者的最大值即可。

試題分析:解:(1)由已知,        1分
時,,所以函數(shù)在區(qū)間 上單調(diào)遞增, 3分
所以函數(shù)在區(qū)間上的最大、最小值分別為,,所以函數(shù)在區(qū)間上的最大值為,最小值為; 6分
(2)證明:設,則.…8分
因為,所以,所以函數(shù)在區(qū)間上單調(diào)遞減,  ……9分
,所以在區(qū)間上,,即,
所以在區(qū)間上函數(shù)的圖象在函數(shù)圖象的下方.………13分
點評:解決的關鍵是利用導數(shù)的符號判定函數(shù)單調(diào)性,并能結(jié)合極值得到最值,進而得到圖象之間的關系,屬于基礎題。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

設函數(shù),其導函數(shù)的圖象如圖所示,則函數(shù)的減區(qū)間是
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

,則等于  (    )
A.-2B.-4C.2D.0

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

是下列的(   )時,f ′(x)一定是增函數(shù)。
A.二次函數(shù)B.反比例函數(shù)C.對數(shù)函數(shù)D.指數(shù)函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖是導函數(shù)的圖象,則下列命題錯誤的是( 。
A.導函數(shù)處有極小值
B.導函數(shù)處有極大值
C.函數(shù)處有極小值
D.函數(shù)處有極小值

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設動直線與函數(shù)的圖象分別交于點。則的最小值為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

某質(zhì)點按規(guī)律單位:,單位:)作變速直線運動,則該質(zhì)點在時的瞬時速度為(     )
A.2B.3 C.4D.5

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)
已知函數(shù)是實數(shù)集R上的奇函數(shù),且在R上為增函數(shù)。
(Ⅰ)求的值;
(Ⅱ)求恒成立時的實數(shù)t的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

曲線處切線的斜率是               .

查看答案和解析>>

同步練習冊答案