如圖,已知C點(diǎn)在圓O直徑BE的延長(zhǎng)線上,CA切圓O于A點(diǎn),DC是∠ACB的平分線交AE于點(diǎn)F,交AB于D點(diǎn).
(1)求∠ADF的度數(shù);
(2)AB=AC,求AC∶BC.
(1) ∠ADF=45°; (2) AC∶BC=.
解析試題分析:(1)由弦切角與角平分線,三角形的外角可得∠ADF=∠AFD,BE為直徑∠DAE=90°,則可得∠ADF=45°;(2)由△ACE∽△BCA得,在中可得比值.
解(1)∵AC為圓O的切線,∴∠B=∠EAC,
又知DC是∠ACB的平分線,∴∠ACD=∠DCB,
∴∠B+∠DCB=∠EAC+∠ACD,
即∠ADF=∠AFD,又因?yàn)锽E為圓O的直徑,
∴∠DAE=90°,∴∠ADF= (180°-∠DAE)=45°. 5分
(2)∵∠B=∠EAC,∠ACB=∠ACB,
∴△ACE∽△BCA,
∴,又∵AB=AC,∠ADF=45°,
∴∠B=∠ACB=30°,
∴在中,=tan∠B=tan 30°=. 10分
考點(diǎn):弦切角,三角形的相似的性質(zhì)與判定.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,是圓內(nèi)兩弦和的交點(diǎn),過(guò)延長(zhǎng)線上一點(diǎn)作圓的切線,為切點(diǎn),已知.求證:
(Ⅰ)∽;
(Ⅱ)∥.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,EP交圓于E、C兩點(diǎn),PD切圓于D,G為CE上一點(diǎn)且,連接DG并延長(zhǎng)交圓于點(diǎn)A,作弦AB垂直EP,垂足為F.
(1)求證:AB為圓的直徑;
(2)若AC=BD,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,EP交圓于E、C兩點(diǎn),PD切圓于D,G為CE上一點(diǎn)且,連接DG并延長(zhǎng)交圓于點(diǎn)A,作弦AB垂直EP,垂足為F.
(1)求證:AB為圓的直徑;
(2)若AC=BD,求證:AB=ED.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,,分別為的邊,上的點(diǎn),且不與的頂點(diǎn)重合。已知的長(zhǎng)為,AC的長(zhǎng)為n,,的長(zhǎng)是關(guān)于的方程的兩個(gè)根。
(1)證明:,,,四點(diǎn)共圓;
(2)若,且,求,,,所在圓的半徑。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知,為圓的直徑,為垂直的一條弦,垂足為,弦交于.
(1)求證:、、、四點(diǎn)共圓;
(2)若,求線段的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,PA為⊙O的切線,A為切點(diǎn),PBC是過(guò)點(diǎn)O的割線,PA=10,PB=5。
求:(1)⊙O的半徑;(2)s1n∠BAP的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
如右圖,是⊙的直徑,是延長(zhǎng)線上的一點(diǎn),過(guò)作⊙的切線,切點(diǎn)為,,若,則⊙的直徑 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
如圖,在中,//,//,若
,則BD的長(zhǎng)為 、AB的長(zhǎng)為_(kāi)__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com