如圖所示,正方體ABCD—A1B1C1D1中,E、F分別是AB和AA1的中點(diǎn).

求證:(1)E,C,D1,F(xiàn)四點(diǎn)共面;

(2)CE,D1F,DA三線共點(diǎn).

證明略


解析:

(1)如圖所示,連接CD1,EF,A1B,

∵E、F分別是AB和AA1的中點(diǎn),

∴EF∥A1B且EF=A1B,

又∵A1D  BC,

∴四邊形A1BCD1是平行四邊形,∴A1B∥CD1,∴EF∥CD1,

∴EF與CD1確定一個(gè)平面,

∴E,F(xiàn),C,D1

即E,C,D1,F(xiàn)四點(diǎn)共面.

(2)由(1)知EF∥CD1,且EF=CD1

∴四邊形CD1FE是梯形,

∴CE與D1F必相交,設(shè)交點(diǎn)為P,

則P∈CE平面ABCD,

且P∈D1F平面A1ADD1,

∴P∈平面ABCD且P∈平面A1ADD1.

又平面ABCD∩平面A1ADD1=AD,

∴P∈AD,∴CE,D1F,DA三線共點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,正方體ABCD-A1B1C1D1中,E、F分別是AB、BC的中點(diǎn),G為DD1上一點(diǎn),且D1G:GD=1:2,AC∩BD=O,求證:平面AGO∥平面D1EF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,正方體ABCD-A1B1C1D1中,E、F分別是正方體ADD1A1和ABCD的中心,G是C1C的中點(diǎn),設(shè)GF、C1F與AB所成的角分別為α、β,則α+β等于
π
2
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,正方體ABCD-A1B1C1D1中,E、F分別是AB、BC的中點(diǎn),G為DD1上一點(diǎn),且D1G:GD=1:2,AC∩BD=O,求證:平面AGO//平面D1EF.

 
 


查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,正方體ABCDA1B1C1D1的棱長(zhǎng)為1,點(diǎn)MAB上,且AMAB,點(diǎn)P在平面ABCD上,且動(dòng)點(diǎn)P到直線A1D1的距離的平方與P到點(diǎn)M的距離的平方差為1,在平面直角坐標(biāo)系xAy中,動(dòng)點(diǎn)P的軌跡方程是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年人教B版高中數(shù)學(xué)必修2 1.2點(diǎn) 線 面之間的位置關(guān)系練習(xí)卷(解析版) 題型:解答題

(12分)如圖所示,正方體ABCD-A1B1C1D1中,E、F分別是AB、BC的中點(diǎn),G為DD1上一點(diǎn),且D1G:GD=1:2,AC∩BD=O,求證:平面AGO//平面D1EF.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案