7.對兩個(gè)分類變量進(jìn)行獨(dú)立性檢驗(yàn)的主要作用是(  )
A.判斷模型的擬合效果
B.對兩個(gè)變量進(jìn)行相關(guān)分析
C.給出兩個(gè)分類變量有關(guān)系的可靠程度
D.估計(jì)預(yù)報(bào)變量的平均值

分析 直接利用獨(dú)立性檢驗(yàn)的定義,可得結(jié)論.

解答 解:對兩個(gè)分類變量進(jìn)行獨(dú)立性檢驗(yàn)的主要作用是給出兩個(gè)分類變量有關(guān)系的可靠程度.
故選:C.

點(diǎn)評 本題考查對兩個(gè)分類變量進(jìn)行獨(dú)立性檢驗(yàn)的主要作用,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.對于兩個(gè)圖形F1,F(xiàn)2,我們將圖形F1上的任意一點(diǎn)與圖形F2上的任意一點(diǎn)間的距離中的最小值,叫作圖形F1與圖形F2的距離.若兩個(gè)函數(shù)圖象的距離小于1,稱這兩個(gè)函數(shù)互為“可及函數(shù)”.給出下列幾對函數(shù),其中互為“可及函數(shù)”的是( 。
A.f(x)=cosx,g(x)=2B.$f(x)={log_2}({{x^2}-2x+5}),g(x)=sin\frac{π}{2}x$
C.$f(x)=\sqrt{4-{x^2}},g(x)=\frac{3}{4}x+\frac{15}{4}$D.$f(x)=x+\frac{2}{x},g(x)=lnx+2$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)a與b為正數(shù),并且滿足a+b=1,a2+b2≥k,則k的最大值為(  )
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=ex-x-2(e為自然對數(shù)的底數(shù)).
(1)求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(2)若k為正整數(shù),且當(dāng)x>0時(shí),$\frac{1}{f'(x)}+1>\frac{k}{x+1}$,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)$f(x)=\frac{e^x}{x}$的單調(diào)增區(qū)間是(  )
A.(-∞,1)B.(1,+∞)C.(-∞,-1)D.(-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.求定積分:$\int_1^2{{{({x+1})}^2}dx=}$$\frac{19}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知{an}是等差數(shù)列,a6=16,a12=-8,記數(shù)列{an}的第n項(xiàng)到第n+5項(xiàng)的和為Tn,則|Tn|取得最小值時(shí)的n的值為7或8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)函數(shù)$f(x)={e^x}-ax-\frac{a}{2}$(x∈R,實(shí)數(shù)a∈[0,+∞),e=2.71828…是自然對數(shù)的底數(shù),$\sqrt{e}=1.64872…$).
(Ⅰ)若f(x)≥0在x∈R上恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅱ)若ex≥lnx+m對任意x>0恒成立,求證:實(shí)數(shù)m的最大值大于2.3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知m∈[0,3],則函數(shù)f(x)=2|x|-m存在零點(diǎn)的概率為( 。
A.$\frac{3}{4}$B.$\frac{1}{4}$C.$\frac{2}{3}$D.$\frac{1}{3}$

查看答案和解析>>

同步練習(xí)冊答案