精英家教網 > 高中數學 > 題目詳情
若(1-x)2011=a0+a1x+…+a2011x2011(x∈R),則a1+…+a2011=(  )
A、2B、0C、-1D、-2
考點:二項式系數的性質
專題:二項式定理
分析:在所給的等式中,令x=0可得a0=1,在所給的等式中,再令x=1可得a0+a1+…+a2011=0,從而求得a1+…+a2011的值.
解答: 解:在(1-x)2011=a0+a1x+…+a2011x2011(x∈R)中,令x=0,可得a0=1.
在(1-x)2011=a0+a1x+…+a2011x2011(x∈R)中,再令x=1可得a0+a1+…+a2011=0,
∴a1+…+a2011=-1,
故選:C.
點評:本題主要考查二項式定理的應用,是給變量賦值的問題,關鍵是根據要求的結果,選擇合適的數值代入,屬于基題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

雙曲線M:
x2
a2
-
y2
b2
=1(a>0,b>0)實軸的兩個頂點為A,B,點P為雙曲線M上除A、B外的一個動點,若QA⊥PA且QB⊥PB,則動點Q的運動軌跡為(  )
A、圓B、橢圓C、雙曲線D、拋物線

查看答案和解析>>

科目:高中數學 來源: 題型:

不等式
3x-1
x-2
≤-1的解集是( 。
A、{x|
3
4
≤x≤2}
B、{x|
3
4
≤x<2}
C、{x|x>2或x≤
3
4
}
D、{x|x<2}

查看答案和解析>>

科目:高中數學 來源: 題型:

由①正方形的對角線相等;②矩形的對角線相等;③正方形是矩形.寫一個“三段論”形式的推理,則作為大前提、小前提和結論的分別為( 。
A、②①③B、③①②
C、①②③D、②③①

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數y=Asin(ωx+φ)(ω>0,A>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式為( 。
A、y=sin(2x+
π
6
B、y=2sin(x-
π
6
C、y=2sin(2x-
π
6
D、y=2sin(2x+
π
6

查看答案和解析>>

科目:高中數學 來源: 題型:

過點(2,
π
4
)且平行于極軸的直線的極坐標方程是( 。
A、ρcosθ=4
B、ρsinθ=4
C、ρsinθ=
2
D、ρcosθ=
2

查看答案和解析>>

科目:高中數學 來源: 題型:

若|x|≤
π
4
,則函數f(x)=cos2x+sinx的最小值是( 。
A、
1
2
2
-1)
B、-
1
2
2
-1)
C、
1
2
2
+1)
D、-
1
2
2
+1)

查看答案和解析>>

科目:高中數學 來源: 題型:

橢圓
x2
m2
+
y2
n2
=1(m>0,n>0)一個焦點坐標是(2,0),且橢圓的離心率e=
1
2
,則橢圓標準方程(  )
A、
x2
12
+
y2
16
=1
B、
x2
16
+
y2
12
=1
C、
x2
48
+
y2
64
=1
D、
x2
64
+
y2
48
=1

查看答案和解析>>

科目:高中數學 來源: 題型:

已知圓O:x2+y2=25
①過點P(1,-2
6
)作圓O的切線,求切線方程;
②若點M(x,y)是圓O上任意一點,求
3
x+y的最大值.

查看答案和解析>>

同步練習冊答案