在三棱錐
中,
且
.
(Ⅰ)求證:
;
(Ⅱ)求三棱錐的體積
.
(Ⅰ)證明過程詳見試題解析;(Ⅱ)
.
試題分析:(Ⅰ)由線線垂直得到線面垂直,再根據(jù)直線所在的平面得到線線垂直;(Ⅱ)根據(jù)三棱錐的體積公式
求之.
試題解析:(Ⅰ)證明:因為
,所以
.
又因為
,所以
平面
,所以
.
又
,所以
.所以
平面
.故
.
(Ⅱ)在
中,
,所以
.
又在
中,
,所以
.
又因為
平面
,所以
.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在邊長為4的菱形
ABCD中,∠
DAB=60°,點
E、
F分別在邊
CD、
CB上,點
E與點
C、
D不重合,
EF⊥
AC,
EF∩
AC=
O,沿
EF將△
CEF翻折到△
PEF的位置,使平面
PEF⊥平面
ABFED.
(1)求證:
BD⊥平面
POA;
(2)記三棱錐
P
ABD體積為
V1,四棱錐
P
BDEF體積為
V2,且
,求此時線段
PO的長.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在四棱錐
中,底面
為直角梯形,且
,
,平面
底面
,
為
的中點,
是棱
的中點,
.
(Ⅰ)求證:
平面
;
(Ⅱ)求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,四邊形ABCD為矩形,四邊形ADEF為梯形,AD//FE,∠AFE=60º,且平面ABCD⊥平面ADEF,AF=FE=AB=
=2,點G為AC的中點.
(Ⅰ)求證:EG//平面ABF;
(Ⅱ)求三棱錐B-AEG的體積;
(Ⅲ)試判斷平面BAE與平面DCE是否垂直?若垂直,請證明;若不垂直,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在三棱錐
中,
,
,D為AC的中點,
.
(1)求證:平面
平面
;
(2)如果三棱錐
的體積為3,求
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
棱長為1的正方體的八個頂點都在同一個球面上,則此球的表面積為 .
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
在四棱錐
中,底面
是邊長為
的菱形,
,側(cè)棱
底面
,
,
為
的中點,則四面體
的體積為
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知某球體的體積與其表面積的數(shù)值相等,則此球體的半徑為 .
查看答案和解析>>