如圖,在四棱臺ABCD-A1B1C1D1中,底面ABCD是平行四邊形,DD1⊥平面ABCD,AB=2AD,AD=A1B1,∠BAD=60°.
(1)證明:BD⊥平面ADD1A1;
(2)證明:CC1∥平面A1BD.
考點:直線與平面平行的判定,直線與平面垂直的判定
專題:
分析:(1)利用余弦定理和已知條件求得BD和AD的關(guān)系,進而求得AD2+BD2=AB2,推斷出AD⊥BD,依據(jù)DD1⊥平面ABCD,可知DD1⊥BD,進而根據(jù)線面垂直的判定定理證明出BD⊥平面ADD1A1
(2)連接AC,A1C1,設(shè)AC∩BD=E,連接EA1,根據(jù)四邊形ABCD是平行四邊形,推斷出EC=
1
2
AC,由棱臺定義及AB=2AD=2A1B1知A1C1∥EC,且A1C1=EC,進而推斷出四邊形A1ECC1是平行四邊形,因此CC1∥EA1,最后利用線面平行的判定定理推斷出CC1∥平面A1BD.
解答: (1)證明:∵AB=2AD,∠BAD=60°,在△ABD中,由余弦定理得

     BD2=AD2+AB2-2AD•ABcos60°=3AD2,
∴AD2+BD2=AB2
∴AD⊥BD,
∵DD1⊥平面ABCD,且BD?平面ABCD.
∴DD1⊥BD,
又AD∩DD1=D,
∴BD⊥平面ADD1A1
(2)證明:連接AC,A1C1,設(shè)AC∩BD=E,連接EA1,

∵四邊形ABCD是平行四邊形,
∴EC=
1
2
AC,
由棱臺定義及AB=2AD=2A1B1
A1C1∥EC,且A1C1=EC,
∴四邊形A1ECC1是平行四邊形,因此CC1∥EA1
又∵EA1?平面A1BD,
∴CC1∥平面A1BD,
點評:本題主要考查了線面平行,線面垂直的判定.考查了學生對立體幾何基礎(chǔ)知識的掌握.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

執(zhí)行如圖所示的程序框圖,則輸出S=( 。
A、9B、10C、16D、25

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(nx-n+2)ex(其中n∈R,e為自然對數(shù)的底數(shù)),求f(x)在[0,1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某高中有高一、高二、高三共三個學年,根據(jù)學生的綜合測評分數(shù)分為學優(yōu)生和非學優(yōu)生兩類,某月三個學年的學優(yōu)生和非學優(yōu)生的人數(shù)如表所示(單位:人),若用分層抽樣的方法從三個學年中抽取50人,則高一共有10人.
高一學年 高二學年 高三學年
學優(yōu)生 100 150 z
非學優(yōu)生 300 450 600
(1)求z的值;
(2)用隨機抽樣的方法從高二學年學優(yōu)生中抽取8人,經(jīng)檢測他們的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把這8人的得分看作一個總體,從中任取一個分數(shù)a.記這8人的得分的平均數(shù)為
.
x
,定義事件E={|a-
.
x
|≤0.5,且f(x)=ax2-ax+2.31沒有零點},求事件E發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ex-a(x+2)-b(e為自然對數(shù)的底,a,b∈R).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若函數(shù)f(x)的最小值為0,求b的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

曲線y=lnx-1在x=1處的切線方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等差數(shù)列{an}和{bn}的前n項和分別為Sn和Tn,已知
a5
b5
=
2
3
,求
S9
T9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3+ax2+bx的圖象關(guān)于點(1,1)對稱,給出下列命題:
①f(x)在R上單調(diào)遞增;
②f(x)在R上有極值;
③函數(shù)y=f(x+1)-1是奇函數(shù);
④函數(shù)y=f(x)-x必有三個零點.則其中假命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}的前n項和為Sn,且滿足a2+a4=-22,a1+a4+a7=-21,則使Sn達到最小值的n是
 

查看答案和解析>>

同步練習冊答案