4.設(shè)復(fù)數(shù)z1=1+i,z2=$\sqrt{3}$+i,其中i為虛數(shù)單位,則$\frac{\overline{{z}_{1}}}{{z}_{2}}$的虛部為( 。
A.-$\frac{{1+\sqrt{3}}}{4}$iB.-$\frac{{1+\sqrt{3}}}{4}$C.$\frac{{\sqrt{3}-1}}{4}$iD.$\frac{{\sqrt{3}-1}}{4}$

分析 由z1求出$\overline{{z}_{1}}$,把$\overline{{z}_{1}}$,z2代入$\frac{\overline{{z}_{1}}}{{z}_{2}}$,然后利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡,則答案可求.

解答 解:∵z1=1+i,z2=$\sqrt{3}$+i,
∴$\overline{{z}_{1}}=1-i$.
∴$\frac{\overline{{z}_{1}}}{{z}_{2}}$=$\frac{1-i}{\sqrt{3}+i}=\frac{(1-i)(\sqrt{3}-i)}{(\sqrt{3}+i)(\sqrt{3}-i)}=\frac{\sqrt{3}-1-(\sqrt{3}+1)i}{4}$=$\frac{\sqrt{3}-1}{4}-\frac{\sqrt{3}+1}{4}i$.
則$\frac{\overline{{z}_{1}}}{{z}_{2}}$的虛部為:$-\frac{1+\sqrt{3}}{4}$.
故選:B.

點(diǎn)評 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了共軛復(fù)數(shù)的求法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,對一切n∈N*,點(diǎn)(n,$\frac{{S}_{n}}{n}$)都在函數(shù)f(x)=x+$\frac{{a}_{n}}{2x}$ 的圖象上.
(1)求a1,a2,a3的值,猜想an的表達(dá)式;
(2)并用數(shù)學(xué)歸納法證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)a>-38,P=$\sqrt{a+40}$-$\sqrt{a+41}$,Q=$\sqrt{a+38}$-$\sqrt{a+39}$,則P與Q的大小關(guān)系為P>Q.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,GH是東西方向的公路北側(cè)的邊緣線,某公司準(zhǔn)備在GH上的一點(diǎn)B的正北方向的A處建一倉庫,設(shè)AB=ykm,并在公路北側(cè)建造邊長為xkm的正方形無頂中轉(zhuǎn)站CDEF(其中邊EF在GH上),現(xiàn)從倉庫A向GH和中轉(zhuǎn)站分別修兩條道路AB,AC,已知AB=AC+1,且∠ABC=60°.
(1)求y關(guān)于x的函數(shù)解析式,并指出定義域;
(2)如果中轉(zhuǎn)站四堵圍墻造價(jià)為1萬元/km,兩條道路造價(jià)為3萬元/km,問:x取何值時(shí),該公司建中轉(zhuǎn)站圍墻和兩條道路總造價(jià)M最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)集合M={x|(x+1)(x+2)<0},集合N=$\left\{{x\left|{{2^x}≥\frac{1}{4}}\right.}\right\}$,則 M∪N=( 。
A.{x|x≥-2}B.{x|x>-1}C.{x|x<-1}D.{x|x≤-2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)a=log${\;}_{\frac{1}{3}}}$$\frac{1}{2}$,b=log${\;}_{\frac{1}{5}}}$$\frac{1}{2}$,c=2${\;}^{\frac{1}{3}}}$,則a,b,c的大小關(guān)系為(  )
A.a>c>bB.b>c>aC.c>b>aD.c>a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知集合P={x|x2-4<0},則Q={x|x=2k+1,k∈Z},則P∩Q=( 。
A.{-1,1}B.[-1,1]C.{-1,-3,1,3}D.{-3,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖所示的程序框圖描述的算法,若輸入m=2010,n=1541,則輸出的m的值為( 。
A.2010B.67C.134D.1541

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在四邊形ABCD中,AB=AD=4,BC=CD=$\sqrt{7}$,點(diǎn)E為線段AD上的一點(diǎn).現(xiàn)將△DCE沿線段EC翻折到PEC(點(diǎn)D與點(diǎn)P重合),使得平面PAC⊥平面ABCE,連接PA,PB.
(I)證明:BD⊥平面PAC;
(Ⅱ)若∠BAD=60°,且點(diǎn)E為線段AD的中點(diǎn),求二面角P-AB-C的余弦值.

查看答案和解析>>

同步練習(xí)冊答案