如圖,在四棱錐中,底面是矩形,分別為的中點(diǎn),,且
(1)證明:;
(2)求二面角的余弦值。
(1)以D為坐標(biāo)原點(diǎn),射線(xiàn)DA,DC,DP分別為軸、軸、軸正半軸建立空間直角坐標(biāo)系則D(0,0,0),A(,0,0),B(,1,0)(0,1,0)P(0,0,)
所以(,0,),,∵·=0,所以MC⊥BD(2)
解析試題分析:(1)證明:因?yàn)镻D⊥平面ABCD,
所以PD⊥DA,PD⊥DC,
在矩形ABCD中,AD⊥DC,
如圖,以D為坐標(biāo)原點(diǎn),
射線(xiàn)DA,DC,DP分別為
軸、軸、軸
正半軸建立空間直角坐標(biāo)系 4分
則D(0,0,0),A(,0,0),
B(,1,0)(0,1,0),
P(0,0,) 6分
所以(,0,),, 7分∵·=0,所以MC⊥BD 7分
(2)解:因?yàn)镸E∥PD,所以ME⊥平面ABCD,ME⊥BD,又BD⊥MC,
所以BD⊥平面MCE,
所以CE⊥BD,又CE⊥PD,所以CE⊥平面PBD, 9分
由已知,所以平面PBD的法向量 10分
M為等腰直角三角形PAD斜邊中點(diǎn),所以DM⊥PA,
又CD⊥平面PAD,AB∥CD,所以AB⊥平面PAD,AB⊥DM,
所以DM⊥平面PAB, 11分
所以平面PAB的法向量(-,0,) 12分
設(shè)二面角A—PB—D的平面角為θ,
則.
所以,二面角A—PB—D的余弦值為. 15分
考點(diǎn):線(xiàn)線(xiàn)垂直的判定與二面角
點(diǎn)評(píng):本題中充分利用DA,DC,DP兩兩垂直建立空間直角坐標(biāo)系,將證明兩線(xiàn)垂直轉(zhuǎn)化為兩直線(xiàn)的法向量垂直,將求二面角轉(zhuǎn)化為求兩個(gè)平面的法向量的夾角
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
幾何體EFG —ABCD的面ABCD,ADGE,DCFG均為矩形,AD=DC=l,AE=。
(I)求證:EF⊥平面GDB;
(Ⅱ)線(xiàn)段DG上是否存在點(diǎn)M使直線(xiàn)BM與平面BEF所成的角為45°,若存在求等¥ 的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖是三棱柱的三視圖,正(主)視圖和俯視圖都是矩形,側(cè)(左)視圖為等邊三角形,為的中點(diǎn).
(1)求證:∥平面;
(2)設(shè)垂直于,且,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四棱錐P-ABCD中,底面ABCD是平行四邊形,∠ACB=90°,平面PAD⊥平面ABCD,
PA=BC=1,PD=AB=,E、F分別為線(xiàn)段PD和BC的中點(diǎn).
(Ⅰ) 求證:CE∥平面PAF;
(Ⅱ)在線(xiàn)段BC上是否存在一點(diǎn)G,使得平面PAG和平面PGC所成二面角的大小為60°?若存在,試確定G的位置;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知在四棱錐中,底面是邊長(zhǎng)為2的正方形,側(cè)棱平面,且,為底面對(duì)角線(xiàn)的交點(diǎn),分別為棱的中點(diǎn)
(1)求證://平面;
(2)求證:平面;
(3)求點(diǎn)到平面的距離。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,為圓的直徑,點(diǎn)、在圓上,矩形所在的平面和圓所在的平面互相垂直,且,.
(Ⅰ)求證:平面;
(Ⅱ)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在三棱錐中,,,,點(diǎn)、、分別為、、的中點(diǎn).
(1)求直線(xiàn)與平面所成角的正弦值;
(2)求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四棱錐P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=,點(diǎn)F是PB的中點(diǎn),點(diǎn)E在邊BC上移動(dòng).
(1)點(diǎn)E為BC的中點(diǎn)時(shí),試判斷EF與平面PAC的位置關(guān)系,并說(shuō)明理由;
(2)求證:無(wú)論點(diǎn)E在BC邊的何處,都有;
(3)當(dāng)為何值時(shí),與平面所成角的大小為45°.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,將邊長(zhǎng)為2的正方形ABCD沿對(duì)角線(xiàn)BD折疊,使的平面ABD⊥平面CBD,AE⊥平面ABD,且AE=,
(1) 求證:DE⊥AC
(2)求DE與平面BEC所成角的正弦值
(3)直線(xiàn)BE上是否存在一點(diǎn)M,使得CM//平面ADE,若存在,求M的位置,不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com