已知在等差數(shù)列{an}中,a1=2,a4=11,在等比數(shù)列{bn}中,b1=
a3
2
,b4=a11,
(Ⅰ)求等比數(shù)列{bn}的通項(xiàng)公式bn;
(Ⅱ)求證數(shù)列{bn+1}不可能是等比數(shù)列.
考點(diǎn):等差數(shù)列與等比數(shù)列的綜合
專(zhuān)題:等差數(shù)列與等比數(shù)列
分析:(Ⅰ)設(shè){an}的公差為d,{bn}的公比為q,利用a1=2,a4=11,求解公差,利用b1=
a3
2
,b4=a11,求解公比,然后求等比數(shù)列{bn}的通項(xiàng)公式bn;
(Ⅱ)求出數(shù)列{bn}的前3項(xiàng),然后求出{bn+1}的前3項(xiàng),判斷數(shù)列不可能是等比數(shù)列即可.
解答: 解:(Ⅰ)設(shè){an}的公差為d,{bn}的公比為q,則
∵a1=2,a4=11,
∴d=
a4-a1
4-1
=3,
∴an=a1+(n-1)d=3n-1,
∴b1=
a3
2
=4,b4=32
∴q3=8即q=2
∴bn=b1qn-1=4×2n-1=2n+1(6分)
(Ⅱ)若{bn+1}是等比數(shù)列,則b1+1,b2+1,b3+1是等比數(shù)列,
由(Ⅰ)可得b1=4,b2=8,b3=16,
顯然{bn+1}的前3項(xiàng)依次為5,9,17,
由于5×17=85,92=81
∴b1+1,b2+1,b3+1不是等比數(shù)列,
∴數(shù)列{bn+1}不可能是等比數(shù)列.(13分)
點(diǎn)評(píng):本題考查等差數(shù)列與等比數(shù)列的綜合應(yīng)用,基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用秦九韶算法求多項(xiàng)式f(x)=1+2x+x2-3x3+2x4,當(dāng)X=-1時(shí)的值,該算法運(yùn)算次數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解不等式:
(1)log2
2x2+2x+1
x+2
≤0;
(2)
|x-3|(x-2)
x2(x-1)
≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=mx2-2x+3只有一個(gè)零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題甲:sinx=a,命題乙:arcsina=x(-1≤a≤1),則(  )
A、甲是乙的充分條件,但不是必要條件
B、甲是乙的必要條件,但不是充分條件
C、甲是乙的充分必要條件
D、甲不是乙的充分條件,也不是必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等比數(shù)列{an}的前n和為Sn,當(dāng)公比q=3,S3=
13
3
時(shí),數(shù)列{an}的通項(xiàng)公式是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=(m2+2m-2)xm為冪函數(shù)且在第一象限為增函數(shù),則m的值為( 。
A、1B、-3C、-1D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=(a-1)x在R上為減函數(shù),則a的取值范圍是( 。
A、a>0且a≠1B、a>2
C、a<2D、1<a<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知(x,y)在映射f的作用下的象是(x+y,x-y),則在f的作用下(1,2)的原象是( 。
A、(-
3
2
,
1
2
)
B、(-
3
2
,-
1
2
)
C、(
3
2
,-
1
2
)
D、(
3
2
,
1
2
)

查看答案和解析>>

同步練習(xí)冊(cè)答案