【題目】圓錐的軸截面SAB是邊長(zhǎng)為2的等邊三角形,O為底面中心,M為SO的中點(diǎn),動(dòng)點(diǎn)P在圓錐底面內(nèi)(包括圓周).若AM⊥MP,則P點(diǎn)形成的軌跡的長(zhǎng)度為

【答案】
【解析】解:以AB所在直線為x軸,以O(shè)S為z軸,建立空間直角坐標(biāo)系, 則A(﹣1,0,0),B(1,0,0), , ,設(shè)P(x,y,0).于是有
=(1,0, ), =(x,y,﹣ ).
由于AM⊥MP,
所以(1,0, )(x,y,﹣ )=0,
即x= ,此為P點(diǎn)形成的軌跡方程,
其在底面圓盤內(nèi)的長(zhǎng)度為
故答案為
建立空間直角坐標(biāo)系,寫出點(diǎn)的坐標(biāo),設(shè)出動(dòng)點(diǎn)的坐標(biāo),利用向量的坐標(biāo)公式求出向量坐標(biāo),利用向量垂直的充要條件列出方程求出動(dòng)點(diǎn)P的軌跡方程,得到P的軌跡是底面圓的弦,利用勾股定理求出弦長(zhǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線經(jīng)過(guò)點(diǎn),且斜率為

(I)求直線的方程;

)若直線平行,且點(diǎn)P到直線的距離為3,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)的圖象與函數(shù)h(x)x2的圖象關(guān)于點(diǎn)A(0,1)對(duì)稱.

(1)求函數(shù)f(x)的解析式;

(2)g(x)f(x),g(x)在區(qū)間(0,2]上的值不小于6,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l的參數(shù)方程為 為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸正半軸為極軸建立極坐標(biāo)系,橢圓C的極坐標(biāo)方程為 ,且直線l經(jīng)過(guò)橢圓C的右焦點(diǎn)F.
(1)求橢圓C的內(nèi)接矩形PMNQ面積的最大值;
(2)若直線l與橢圓C交于A,B兩點(diǎn),求|FA||FB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】按下列程序框圖來(lái)計(jì)算:
如果輸入的x=5,應(yīng)該運(yùn)算( )次才停止.
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,的中點(diǎn).

求證:平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】時(shí)下,網(wǎng)校教學(xué)越來(lái)越受到廣大學(xué)生的喜愛(ài),它已經(jīng)成為學(xué)生們課外學(xué)習(xí)的一種趨勢(shì),假設(shè)某網(wǎng)校的套題每日的銷售量(單位:千套)與銷售價(jià)格(單位:元/套)滿足的關(guān)系式,其中,為常數(shù).已知銷售價(jià)格為4/套時(shí),每日可售出套題21千套.

1)求的值;

2)假設(shè)網(wǎng)校的員工工資,辦公等所有開(kāi)銷折合為每套題2元(只考慮銷售出的套數(shù)),試確定銷售價(jià)格的值,使網(wǎng)校每日銷售套題所獲得的利潤(rùn)最大.(保留1位小數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是平行四邊形,已知,,平面平面.

(1)證明:

(2)若,求平面與平面所成二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線C1yx2(p>0)的焦點(diǎn)與雙曲線C2y21的右焦點(diǎn)的連線交C1于第一象限的點(diǎn)M.C1在點(diǎn)M處的切線平行于C2的一條漸近線,則p( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案