已知
a
b
滿足:|
a
|=3,|
b
|=2,則|
a
+
b
|=4,則|
a
-
b
|=(  )
A、
3
B、
5
C、3
D、
10
考點:向量的模
專題:平面向量及應(yīng)用
分析:由題意可得
a
b
=
3
2
,而|
a
-
b
|=
(
a
-
b
)2
=
(
a
+
b
)2-4
a
b
,代值計算可得.
解答: 解:∵|
a
|=3,|
b
|=2,且|
a
+
b
|=4,
∴|
a
+
b
|2=
a
2
+2
a
b
+
b
2

=13+2
a
b
=16,∴
a
b
=
3
2
,
∴|
a
-
b
|=
(
a
-
b
)2
=
(
a
+
b
)2-4
a
b

=
16-4×
3
2
=
10

故選:D
點評:本題考查向量的模長公式,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=lg(x2-x-2)的定義域為集合A,函數(shù)g(x)=
3-|x|
的定義域為集合B.
(1)求A∩B;
(2)若C={x|m-1<x<m+2},C⊆B,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|0<x<2},集合B={x|1<x≤3},則A∪B=(  )
A、A={x|0<x<3}
B、B={x|0<x≤3}
C、B={x|1<x<2}
D、B={x|0<x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,集合A={x|1≤x<5},B={x|2<x<8}.
(1)求A∪B,(∁UA)∩B;
(2)若C={x|a<x≤a+3},且C∩A=C,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F是拋物線C:y2=4x的焦點,P是拋物線C上的動點,若定點A(-1,0),則
|PF|
|PA|
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文科)如圖,三棱柱ABC-A1B1C1D1,中,側(cè)面BB1C1C為菱形,B1C的中點為O,且AO⊥平面BB1C1C.
(1)證明:B1C⊥AB;
(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱錐A-BB1C的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐E-ABCD中,面ABE⊥面ABCD,側(cè)面ABE是等腰直角三角形,EA⊥EB,且AB∥CD,AB⊥BC,AB=2CD=2BC=2.
(Ⅰ)求證:AB⊥ED;
(Ⅱ)求直線CE與面ABE的所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線C1
x2
a2
-
y2
b2
=1的左準(zhǔn)線為l,左焦點和右焦點分別為F1、F2,拋物線C2的準(zhǔn)線為l,焦點為F2,C1與C2的一個交點為p,線段PF2的中點為M,O是坐標(biāo)原點,則
|OF1|
|PF1|
-
|OM|
|PF2|
=( 。
A、-1
B、1
C、-
1
2
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平面直角坐標(biāo)系中,O為原點,射線OA與x軸正半軸重合,射線OB是第一象限角平分線.在OA上有點列A1,A2,A3,…,An,…,在OB上有點列B1,B2,B3,…,Bn,…已知
OAn+1
=
4
5
OAn
,A1(5,0),|
OB1
|=
2
,|
OBn+1
|=|
OBn
|+
2

(1)求點A2,B1的坐標(biāo);
(2)求
OAn
OBn
的坐標(biāo);
(3)求△AnOBn面積的最大值,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案