設(shè)f(x)是定義在R上的偶函數(shù),當(dāng)x<0時,f′(x)>0,且f(-2)=0,則不等式f(x)<0的解集為
 
考點:函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:首先,得到函數(shù)的單調(diào)遞減區(qū)間為(0,+∞),然后,根據(jù)偶函數(shù)的圖象特征,得到f(2)=0,從而得到結(jié)果.
解答: 解:∵x<0時,f′(x)>0,
∴函數(shù)的單調(diào)遞增區(qū)間為(-∞,0),
∵f(x)是定義在R上的偶函數(shù),
∴函數(shù)的單調(diào)遞減區(qū)間為(0,+∞),
∵f(-2)=0,
∴f(2)=0
∴當(dāng)x<-2時,f(x)<0,
當(dāng)-2<x<0時,f(x)>0,
當(dāng)0<x<2時,f(x)>0,
當(dāng)x>2時,f(x)<0,
∴當(dāng)x<-2或x>2時,f(x)<0,
∴不等式f(x)<0的解集為{x|x<-2或x>2},
故答案為:{x|x<-2或x>2}.
點評:本題重點考查了函數(shù)為奇函數(shù)的概念和圖象特征,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2cos2x+2sinxsin(x+
π
2
),
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)求函數(shù)f(x)在區(qū)間[0,
π
2
]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x3-2x在x=1處的切線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實數(shù)x,y滿足
x+y≤1
x≥0
y≥0
,則z=2x-y的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點M(x0,y0)是函數(shù)f(x)=2014sinx的圖象上一點,且f(x0)=2014,則該函數(shù)圖象在點M處的切線的斜率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個結(jié)論:
①若A、B、C、D是平面內(nèi)四點,則必有
AC
+
BD
=
BC
+
AD

②對于命題p:?x∈R,使得x2+x+1<0,則?p:?x∈R,均有x2+x+1>0;
③若函數(shù)f(x)=
lnx,x>0
f(x+1)+1,x≤0
,則f(
1
e
-1)的值為0;
④△ABC中,∠ABC=60°,AB=2,BC=6,BC邊上任取一點D,使△ABD為鈍角三角形的概率為
1
6

其中正確結(jié)論的序號是
 
.(填上所有正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在極坐標(biāo)系中,設(shè)極徑為ρ(ρ>0),極角為θ(0≤θ<2π),⊙A的極坐標(biāo)方程為ρ=2cosθ,點C在極軸的上方,∠AOC=
 π 
6
.△OPQ是以O(shè)Q為斜邊的等腰直角三角形,若C為OP的中點,求點Q的極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若等比數(shù)列{an}的首項為
1
9
,且a4=
2
1
(2x)dx,則數(shù)列{an}的公比是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

1001101(2)與下列哪個值相等(  )
A、125(7)
B、136(6)
C、177(5)
D、115(8)

查看答案和解析>>

同步練習(xí)冊答案