分析 (1)確定函數(shù)的解析式,利用配方法,得出結(jié)論;
(2)利用投資邊際效應函數(shù)F(x)=f(x+1)-f(x)≥0,解不等式可得結(jié)論.
解答 解:(1)$y=f(x)+h({10-x})=-\frac{7}{12}{({x-4})^2}+29$,即投資A項目4百萬,投資B項目6百萬,收益總額最大.
(2)$F(x)=f({x+1})-f(x)=-\frac{1}{4}({2x+1})+2≥0$,解得$x≤\frac{7}{2}$,投資A項目350萬元,同理可得,應投資B項目550萬元.
點評 本題考查函數(shù)在生產(chǎn)實際中的綜合運用,解題時要認真審題,注意挖掘題設中的隱含條件,合理地進行等價轉(zhuǎn)化.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}\overrightarrow{AC}$+$\frac{1}{3}$$\overrightarrow{AB}$ | B. | $\frac{1}{2}\overrightarrow{AC}$+$\frac{1}{6}$$\overrightarrow{AB}$ | C. | $\frac{1}{6}$$\overrightarrow{AC}$+$\frac{1}{2}\overrightarrow{AB}$ | D. | $\frac{1}{6}$$\overrightarrow{AC}$+$\frac{3}{2}$$\overrightarrow{AB}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 2 | C. | -2 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{4}{3}$$\sqrt{22}$ | B. | $\frac{4}{3}$$\sqrt{66}$ | C. | $\sqrt{66}$ | D. | 4$\sqrt{66}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com