精英家教網 > 高中數學 > 題目詳情

【題目】已知分別為橢圓的左、右焦點,為該橢圓的一條垂直于軸的動弦,直線軸交于點,直線與直線的交點為.

1)證明:點恒在橢圓.

2)設直線與橢圓只有一個公共點,直線與直線相交于點,在平面內是否存在定點,使得恒成立?若存在,求出該點坐標;若不存在,說明理由.

【答案】1)見解析(2)存在,

【解析】

1)根據題意求得的坐標,設出的坐標,求得直線的方程,由此求得的坐標,代入橢圓方程的左邊,化簡后得到,由此判斷出恒在橢圓.

2)首先判斷直線的斜率是否存在.然后當直線斜率存在時,設出直線的方程,判斷出的位置并設出的坐標.聯(lián)立直線的方程和橢圓方程,化簡后利用判別式等于零求得的關系式,進而求得的坐標,結合點坐標以及,利用列方程,結合等式恒成立求得的坐標.

1)證明:由題意知,設,則.

直線的方程為,直線的方程為

聯(lián)立可得,,即的坐標為.

因為,

所以點恒在橢圓.

2)解:當直線的斜率不存在時,不符合題意.不妨設直線的方程為,由對稱性可知,若平面內存在定點,使得恒成立,則一定在軸上,故設,

可得.

因為直線與橢圓只有一個公共點,

所以,

所以.

又因為,所以,

.

所以對于任意的滿足恒成立,

所以解得.

故在平面內存在定點,使得恒成立.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某單位N名員工參加“社區(qū)低碳你我他”活動.他們的年齡在25歲至50歲之間.按年齡分組:第1組[25,30),第2組[30,35),第3組[35,40),第4組[40,45),第5組[45,50],得到的頻率分布直方圖如圖所示.下表是年齡的頻率分布表.

區(qū)間

[25,30)

[30,35)

[35,40)

[40,45)

[45,50]

人數

25

a

b

(1)求正整數a,b,N的值;

(2)現要從年齡較小的第1,2,3組中用分層抽樣的方法抽取6人,則年齡在第1,2,3組的人數分別是

多少?

(3)在(2)的條件下,從這6人中隨機抽取2人參加社區(qū)宣傳交流活動,求恰有1人在第3組的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線的焦點為F,過F作直線交拋物線CA,B兩點,過A,B分別作拋物線C的切線,兩條切線交于點P.

1)若P的坐標為,求直線的斜率;

2)若P始終不在橢圓的內部(不包括邊界),求外接圓面積的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】上世紀末河南出土的以鶴的尺骨(翅骨)制成的“骨笛”(圖1),充分展示了我國古代高超的音律藝術及先進的數學水平,也印證了我國古代音律與歷法的密切聯(lián)系.2為骨笛測量“春(秋)分”,“夏(冬)至”的示意圖,圖3是某骨笛的部分測量數據(骨笛的彎曲忽略不計),夏至(或冬至)日光(當日正午太陽光線)與春秋分日光(當日正午太陽光線)的夾角等于黃赤交角.

由歷法理論知,黃赤交角近1萬年持續(xù)減小,其正切值及對應的年代如下表:

黃赤交角

正切值

0.439

0.444

0.450

0.455

0.461

年代

公元元年

公元前2000

公元前4000

公元前6000

公元前8000

根據以上信息,通過計算黃赤交角,可估計該骨笛的大致年代是( )

A.公元前2000年到公元元年B.公元前4000年到公元前2000

C.公元前6000年到公元前4000D.早于公元前6000

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在三棱錐D-ABC中,,且,,MN分別是棱BC,CD的中點,下面結論正確的是(

A.B.平面ABD

C.三棱錐A-CMN的體積的最大值為D.ADBC一定不垂直

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,是邊長為4的正方形,平面,分別為的中點.

1)證明:平面.

2)若,求二面角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某省從2021年開始將全面推行新高考制度,新高考“”中的“2”要求考生從政治、化學、生物、地理四門中選兩科,按照等級賦分計入高考成績,等級賦分規(guī)則如下:從2021年夏季高考開始,高考政治、化學、生物、地理四門等級考試科目的考生原始成績從高到低劃分為五個等級,確定各等級人數所占比例分別為,,,等級考試科目成績計入考生總成績時,將等級內的考生原始成績,依照等比例轉換法分別轉換到、、、、五個分數區(qū)間,得到考生的等級分,等級轉換分滿分為100分.具體轉換分數區(qū)間如下表:

等級

比例

賦分區(qū)間

而等比例轉換法是通過公式計算:

其中,分別表示原始分區(qū)間的最低分和最高分,、分別表示等級分區(qū)間的最低分和最高分,表示原始分,表示轉換分,當原始分為,時,等級分分別為、

假設小南的化學考試成績信息如下表:

考生科目

考試成績

成績等級

原始分區(qū)間

等級分區(qū)間

化學

75分

等級

設小南轉換后的等級成績?yōu)?/span>,根據公式得:

所以(四舍五入取整),小南最終化學成績?yōu)?7分.

已知某年級學生有100人選了化學,以半期考試成績?yōu)樵汲煽冝D換本年級的化學等級成績,其中化學成績獲得等級的學生原始成績統(tǒng)計如下表:

成績

95

93

91

90

88

87

85

人數

1

2

3

2

3

2

2

(1)從化學成績獲得等級的學生中任取2名,求恰好有1名同學的等級成績不小于96分的概率;

(2)從化學成績獲得等級的學生中任取5名,設5名學生中等級成績不小于96分人數為,求的分布列和期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知四棱錐的底面ABCD是邊長為2的正方形,且.若四棱錐P-ABCD的五個頂點在以4為半徑的同一球面上,當PA最長時,則______________;四棱錐P-ABCD的體積為______________.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,.

1)求直線與曲線相切時,切點的坐標;

2)當時,恒成立,求的取值范圍.

查看答案和解析>>

同步練習冊答案