設(shè)復(fù)數(shù)z=-1+ai(a≠0),若|z+i|=
2
,則復(fù)數(shù)
.
z
在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第
 
象限.
考點(diǎn):復(fù)數(shù)的代數(shù)表示法及其幾何意義
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:由模長(zhǎng)公式可得a值,進(jìn)而可得復(fù)數(shù)
.
z
,可得結(jié)論.
解答: 解:∵z=-1+ai,∴z+i=-1+(a+1)i
∴|z+i|=
(-1)2+(a+1)2
=
2
,
解得a=-2,或a=0(舍去),
∴z=-1-2i,∴復(fù)數(shù)
.
z
=-1+2i,
∴復(fù)數(shù)
.
z
在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第二象限
故答案為:二
點(diǎn)評(píng):本題考查復(fù)數(shù)的代數(shù)形式和幾何意義,涉及模長(zhǎng)公式,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從4名男生和2名女生中任選3人參加演講比賽,則所選3人中女生人數(shù)不超過(guò)1人的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足an+1=
2an,(0≤an
1
2
)
2an-1,(
1
2
an<1)
,若a1=
6
7
,則a8的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若多項(xiàng)式(1+x)m=a0+a1x+a2x2+…+amxm,滿足:a1+2a2+…+mam=192,則不等式
1
a3
+
2
a3
+…+
n
a3
3
4
成立時(shí),正整數(shù)n的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f1(x)=-ax2,f2(x)=x3+x2,f(x)=f1(x)+f2(x),設(shè)f(x)的導(dǎo)函數(shù)為f′(x),若不等式f1(x)<f′(x)<f2(x)在區(qū)間(1,+∞)上恒成立,則a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

判斷下列命題正確的是
 

(1)若
x
y
,則lgx>lgy;
(2)數(shù)列{an}、{bn}均為等差數(shù)列,前n項(xiàng)和分別為Sn、Tn,則
an
bn
=
S2n-1
T2n-1
;
(3){an}為公比是q的等比數(shù)列,前n項(xiàng)和為Sn,則Sm,S2m-Sm,S3m-S2m…,仍為等比數(shù)列且公比為mq;
(4)若
a
=
b
,則
a
c
=
b
c
,反之也成立;
(5)在△ABC中,若A=60°,a=3,b=4,則△ABC其余邊角的解存在且唯一;
(6)已知asinx+bcosx=c(x∈R),則必有a2+b2≥c2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知Sn是數(shù)列{an}前項(xiàng)和,且an>0,對(duì)?n∈N*,總有Sn=
1
2
(an+
1
an
),則an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

復(fù)數(shù)z=(2m2-3m-2)+(m2-3m+2)i,其中m為實(shí)數(shù),且z在復(fù)平面下對(duì)應(yīng)點(diǎn)的坐標(biāo)位于第一象限,則m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直徑為4cm的圓中,36°的圓心角所對(duì)的弧長(zhǎng)是( 。
A、
5
cm
B、
5
cm
C、
π
3
cm
D、
π
2
cm

查看答案和解析>>

同步練習(xí)冊(cè)答案