19.已知函數(shù)f(x)=2lnx+x2-a2x(x>0,a∈R).
(1)當(dāng)a>0時,若函數(shù)f(x)在[1,2]上單調(diào)遞減,求a的最小值;
(2)當(dāng)a=$\sqrt{5}$時,f(x)在區(qū)間(k-$\frac{1}{2}$,k)上為單調(diào)函數(shù),求實數(shù)k的取值范圍.

分析 (1)求導(dǎo)數(shù),函數(shù)f(x)在區(qū)間[1,2]上單調(diào)遞減,可得$\frac{2}{x}$+2x-a2≤0在區(qū)間[1,2]上恒成立,分離參數(shù)求最大值,即可求a的最小值;
(2)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的遞減區(qū)間,得到關(guān)于k的不等式組,求出k的范圍即可.

解答 解:(1)∵f(x)=2lnx+x2-a2x,
∴f′(x)=$\frac{2}{x}$+2x-a2
∵函數(shù)f(x)在區(qū)間[1,2]上單調(diào)遞減,
∴$\frac{2}{x}$+2x-a2≤0在區(qū)間[1,2]上恒成立,
∴a2≥$\frac{2}{x}$+2x,
∵y=$\frac{2}{x}$+2x在區(qū)間[1,2]上單調(diào)遞增,
∴ymax=5,∴a2≥5,
∵a>0,∴a≥$\sqrt{5}$;
(2)∵a=$\sqrt{5}$時,f(x)=2lnx+x2-5x,(x>0),
∴f′(x)=$\frac{(2x-1)(x-2)}{x}$,
令f′(x)<0,解得:$\frac{1}{2}$<x<2,
若f(x)在區(qū)間(k-$\frac{1}{2}$,k)上為單調(diào)函數(shù),
則$\left\{\begin{array}{l}{k-\frac{1}{2}≥\frac{1}{2}}\\{k≤2}\end{array}\right.$,解得0≤k≤2.

點評 本題考查導(dǎo)數(shù)知識的綜合運用,考查函數(shù)的單調(diào)性問題,考查分離參數(shù)法的運用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知x2≤1,求函數(shù)f(x)=-x2+2ax+3的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)集合M={x||x|<1},在集合M中定義一種運算“*”,使得$a*b=\frac{a+b}{1+ab}$.
(Ⅰ)證明:(a*b)*c=a*(b*c);
(Ⅱ)證明:若a∈M,b∈M,則a*b∈M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)f(x)=|x-1|-2|x+1|的最大值為m.
(Ⅰ)求m;
(Ⅱ)若a,b,c∈(0,+∞),$\frac{{{a^2}+{c^2}}}{2}+{b^2}=m$,求ab+bc的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)=$\frac{{x}^{2}-3}{{e}^{x}}$在區(qū)間(0,a)上單調(diào),則a的最大值是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,AB是⊙O的切線,ADE是⊙O的割線,AC=AB,連接CD、CE,分別與⊙O交于點F,點G.
(1)求證:△ADC~△ACE;
(2)求證:FG∥AC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,已知四邊形ACBF內(nèi)接于圓O,F(xiàn)A,BC的延長線交于點D,且FB=FC,AB是△ABC的外接圓的直徑.
(1)求證:AD平分∠EAC;
(2)若AD=4$\sqrt{3}$,∠EAC=120°,求BC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.△ABC中,A=$\frac{π}{6}$,BC=$\sqrt{3}$,則△ABC的外接圓面積為( 。
A.πB.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.求值:$\frac{2}{5}$lg32-$\frac{4}{3}$lg$\sqrt{8}$+lg2•lg50+(lg5)2

查看答案和解析>>

同步練習(xí)冊答案