(本小題滿分12分)

如圖,直三棱柱A1B1C1—ABC中,C1C=CB=CA=2,AC⊥CB.

 D、E分別為棱C1C、B1C1的中點(diǎn).

(1)求二面角B—A1D—A的平面角余弦值;

(2)在線段AC上是否存在一點(diǎn)F,使得EF⊥平面A1BD?

若存在,確定其位置并證明結(jié)論;若不存在,說(shuō)明理由.

(Ⅰ)     (Ⅱ) AC中點(diǎn)


解析:

法一:(1)分別延長(zhǎng)AC,A1D交于G. 過(guò)C作CM⊥A1G 于M,

連結(jié)BM∵BC⊥平面ACC??1A1   ∴CM為BM在平面A1C1CA的內(nèi)射影∴BM⊥A1G  

 ∴∠CMB為二面角B—A1D—A的平面角  平面A1C1CA中,C1C=CA=2,D為C1C的中點(diǎn)∴CG=2,DC=1 在直角三角形CDG中,  ,  余弦值為  6分

(2)在線段AC上存在一點(diǎn)F,使得EF⊥平面A1BD其位置為AC中點(diǎn),證明如下:

∵A1B1C1—ABC為直三棱柱 , ∴B1C1//BC∵由(1)BC⊥平面A1C1CA,∴B1C1⊥平面A1C1CA

∵EF在平面A1C1CA內(nèi)的射影為C1F ,F(xiàn)為AC中點(diǎn) ∴C1F⊥A1D   ∴EF⊥A1D同理可證EF⊥BD,∴EF⊥平面A1BD∵E為定點(diǎn),平面A1BD為定平面,點(diǎn)F唯一    …………12分

解法二:(1)∵A1B1C1—ABC為直三棱住   C1C=CB=CA=2 , AC⊥CB  D、E分別為C1C、B1C1的中點(diǎn), 建立如圖所示的坐標(biāo)系得C(0,0,0) B(2,0,0)  A(0,2,0)

C1(0,0,2)  B1(2,0,2)  A??1(0,2,2)D(0,0,1)  E(1,0,2) 

   設(shè)平面A1BD的法向量為n=(1,)

 

平面ACC1A1??的法向量為=(1,0,0)   

(2)在線段AC上存在一點(diǎn)F,設(shè)F(0,y,0)使得EF⊥平面A1BD

欲使EF⊥平面A1BD    由(2)知,當(dāng)且僅當(dāng)//  

∴存在唯一一點(diǎn)F(0,1,0)滿足條件. 即點(diǎn)F為AC中點(diǎn)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標(biāo)中,O為原點(diǎn),N為動(dòng)點(diǎn),|
ON
|=6,
ON
=
5
OM
.過(guò)點(diǎn)M作MM1丄y軸于M1,過(guò)N作NN1⊥x軸于點(diǎn)N1,
OT
=
M1M
+
N1N
,記點(diǎn)T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(diǎn)(其中點(diǎn)P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動(dòng)經(jīng)濟(jì)增長(zhǎng),某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:

(I)他們選擇的項(xiàng)目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分12分)

某民營(yíng)企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤(rùn)與投資單位是萬(wàn)元)

(1)分別將A,B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù),并寫(xiě)出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬(wàn)元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問(wèn):怎樣分配這10萬(wàn)元投資,才能使企業(yè)獲得最大利潤(rùn),其最大利潤(rùn)為多少萬(wàn)元.

查看答案和解析>>

同步練習(xí)冊(cè)答案