已知函數(shù)f(x)=
-x2+2ax, x≤1
ax+1,  x>1
,若?x1,x2∈R,x1≠x2,使得f(x1)=f(x2)成立,則實(shí)數(shù)a的取值范圍是
(-∞,1)∪(2,+∞)
(-∞,1)∪(2,+∞)
分析:由題意可得,若?x1,x2∈R,x1≠x2,使得f(x1)=f(x2)成立,則說(shuō)明f(x)在R上不單調(diào),分a=0及a≠0兩種情況分布求解即可求得結(jié)論.
解答:解:若?x1,x2∈R,x1≠x2,使得f(x1)=f(x2)成立,則說(shuō)明f(x)在R上不單調(diào).
①當(dāng)a=0時(shí),f(x)=
-x2,x≤1
1,x>1
滿足題意
其其圖象如圖所示,滿足題意

②當(dāng)a<0時(shí),函數(shù)y=-x2+2ax的對(duì)稱軸x=a<0,其圖象如圖所示,滿足題意

③當(dāng)a>0時(shí),函數(shù)y=-x2+ax的對(duì)稱軸x=a>0,其圖象如圖所示,要使得f(x)在R上不單調(diào)

則只要二次函數(shù)的對(duì)稱軸x=a<1,或
a≥1
-12+2a×1>a×1+1

∴0<a<1或a>2,
綜合得:a的取值范圍是(-∞,1)∪(2,+∞).
故答案為:(-∞,1)∪(2,+∞).
點(diǎn)評(píng):本題考查函數(shù)的單調(diào)性,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)
,
求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,則a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定義域上的遞減函數(shù),則實(shí)數(shù)a的取值范圍是( 。
A、(
1
3
,1)
B、(
1
3
,
1
2
]
C、(
1
3
,
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
|x-1|-a
1-x2
是奇函數(shù).則實(shí)數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2x-2-x2x+2-x

(1)求f(x)的定義域與值域;
(2)判斷f(x)的奇偶性并證明;
(3)研究f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x-1x+a
+ln(x+1)
,其中實(shí)數(shù)a≠1.
(1)若a=2,求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(2)若f(x)在x=1處取得極值,試討論f(x)的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊(cè)答案