做一個(gè)封閉的圓柱形鍋爐,容積為V,若兩個(gè)底面使用的材料與側(cè)面的材料相同,問(wèn)鍋爐的高與底面半徑的比為
 
時(shí),造價(jià)最低.
考點(diǎn):基本不等式在最值問(wèn)題中的應(yīng)用
專(zhuān)題:計(jì)算題,不等式的解法及應(yīng)用
分析:兩個(gè)底面使用的材料與側(cè)面的材料相同,面積最小,造價(jià)最低.
解答: 解:設(shè)圓柱的底面半徑r,高h(yuǎn),容積為v,則V=πr2h,∴h=
V
πr2

S=r2+2πrh=2πr(r+
V
πr2
)
=2πr(
r
2
+
r
2
+
V
πr2
)≥6
3
V
•πr
當(dāng)且僅當(dāng)
r
2
=
V
πr2
即r=
3
2V
π
時(shí),S最小即造價(jià)最低,
此時(shí)h=
V
πr2
=
3
V

∴r=2h
故答案為:1:2.
點(diǎn)評(píng):本題主要考查了基本不等式在最值求解中的應(yīng)用,利用基本不等式的關(guān)鍵是要符合其形式,并且要注意驗(yàn)證等號(hào)成立的條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列-1,4,-7,10,…,(-1)n(3n-2)的前n項(xiàng)和為Sn,則S11+S20=(  )
A、-16B、14C、28D、30

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),且對(duì)任意x都有f(x+2)=f(x).當(dāng)x∈[0,1)時(shí),f(x)=2x-1,則f(log
1
2
6)的值為( 。
A、-
5
2
B、-5
C、-
1
2
D、-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}是等差數(shù)列,a1=2,a3=6.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=
2
n(an+2)
,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A(x1,y1),B(x2,y2)是f(x)=
1
2
+log2
x
1-x
圖象上任意兩點(diǎn),設(shè)點(diǎn)M(
1
2
,b)為AB的中點(diǎn),若Sn=f(
1
n
)+f(
2
n
)+f(
3
n
)+…+f(
n-1
n
),其中n∈N+,則n≥2,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P(-1,0)與Q(1,0),且動(dòng)點(diǎn)M滿(mǎn)足|
MP
MQ
|=
1
2
,求點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在三角形 A BC中,A,B,C是三角形 A BC的內(nèi)角,設(shè)函數(shù)f(A)=2sin
B+C
2
sin(π-
A
2
)+sin2(π+
A
2
)-cos2
A
2
,則f( A)的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)行如圖所示的程序框圖,則輸出的a的值為(注:“a=2”,即為“a←2”或?yàn)椤癮:=2”.)(  )
A、2
B、
1
3
C、-
1
2
D、-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線的中心在原點(diǎn),焦距為2
2
,實(shí)軸長(zhǎng)為2,則該雙曲線的標(biāo)準(zhǔn)方程是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案