若函數(shù)f(x)=sinωx (ω>0)在區(qū)間[0,
π
3
]上單調(diào)遞增,在區(qū)間[
π
3
,
π
2
]上單調(diào)遞減,則ω=
3
2
3
2
分析:由題意可知函數(shù)在x=
π
3
時(shí)確定最大值,就是
ωπ  
3
=2kπ+
π
2
,求出ω的值即可.
解答:解:由題意可知函數(shù)在x=
π
3
時(shí)確定最大值,就是
ωπ
3
=2kπ+
π
2
,k∈Z,所以ω=6k+
3
2
;只有k=0時(shí),ω=
3
2
滿足選項(xiàng).
故答案為:
3
2
點(diǎn)評(píng):本題是基礎(chǔ)題,考查三角函數(shù)的性質(zhì),函數(shù)解析式的求法,也可以利用函數(shù)的奇偶性解答,常考題型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=sin(3x+φ)的圖象關(guān)于直線x=
3
對(duì)稱,則φ的最小正值等于( 。
A、
π
8
B、
π
4
C、
π
3
D、
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=sin(x+?)是偶函數(shù),則?可取的一個(gè)值為                  (  )
A、?=-π
B、?=-
π
2
C、?=-
π
4
D、?=-
π
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有以下四個(gè)命題:
①函數(shù)f(x)=sin(
π
3
-2x)的一個(gè)增區(qū)間是[
12
,
11π
12
];
②若函數(shù)f(x)=sin(ωx+φ)為奇函數(shù),則φ為π的整數(shù)倍;
③對(duì)于函數(shù)f(x)=tan(2x+
π
3
),若f(x1)=f(x2),則x1-x2必是π的整數(shù)倍;
④函數(shù)y=2sin(2x+
π
3
)的圖象關(guān)于點(diǎn)(
π
3
,0)對(duì)稱.
其中正確的命題是
 
.(填上正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=sin(ωx+φ)(|φ|<
π
2
)的圖象(部分)如圖所示,則f(x)的解析式是
f(x)=sin(
1
2
x+
π
6
f(x)=sin(
1
2
x+
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=sin(ωx+
π
4
)的圖象的相鄰兩條對(duì)稱軸之間的距離等于
π
3
,則ω=
±3
±3

查看答案和解析>>

同步練習(xí)冊(cè)答案