9.已知f(x)=cos(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<0)的最小正周期為π,且f($\frac{π}{4}}$)=$\frac{{\sqrt{3}}}{2}$.
(1)求ω和φ的值; 
(2)求f(x)的單調(diào)遞增區(qū)間;  
(3)求f(x)在[0,$\frac{π}{2}$]上的值域.

分析 (1)由周期求出ω,由特殊點求出φ的值,可得函數(shù)的解析式.
(2)利用正弦函數(shù)的單調(diào)性,求得f(x)的增區(qū)間.
(3)由條件利用正弦函數(shù)的定義域和值域,求得f(x)在[0,$\frac{π}{2}$]上的值域.

解答 解:(1)f(x)=cos(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<0)的周期T=$\frac{2π}{ω}$=π,∴ω=2,
∵f$({\frac{π}{4}})$=cos$({2×\frac{π}{4}+φ})$=cos$({\frac{π}{2}+φ})$=-sinφ=$\frac{{\sqrt{3}}}{2}$,-$\frac{π}{2}$<φ<0,∴φ=-$\frac{π}{3}$.
(2)由(1)可得f(x)=cos(2x-$\frac{π}{3}$),令2kπ-π≤2x-$\frac{π}{3}$≤2kπ,
求得kπ-$\frac{π}{3}$≤x≤kπ+$\frac{π}{6}$,可得函數(shù)的增區(qū)間為[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈Z.
(3)在[0,$\frac{π}{2}$]上,2x-$\frac{π}{3}$∈[-$\frac{π}{3}$,$\frac{2π}{3}$],cos(2x-$\frac{π}{3}$)∈[-$\frac{1}{2}$,1],
即函數(shù)的值域為[-$\frac{1}{2}$,1].

點評 本題主要考查余弦函數(shù)的圖象特征,由周期求出ω,由特殊點求出φ的值,正弦函數(shù)的單調(diào)性以及它的定義域和值域,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知點F1(-1,0),F(xiàn)2(1,0)是橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左右焦點,過點P(0,3)的直線l與橢圓交于A,B兩點,且|AF1|+|AF2|=4.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若$\overrightarrow{PA}$=$\overrightarrow{AB}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=cos($\frac{π}{3}$+x)cos($\frac{π}{3}$-x)-sinxcosx+$\frac{1}{4}$.
(1)求函數(shù)f(x)的最小正周期和最大值并求取得最大值時的x的取值集合;
(2)求函數(shù)f(x)單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在△ABC中,cos2$\frac{B}{2}$=$\frac{a+c}{2c}$,則△ABC為(  )三角形.
A.B.直角C.等腰直角D.等腰

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左右焦點為F1,F(xiàn)2,上頂點為M,且△MF1F2為面積是1的等腰直角三角形.
(1)求橢圓E的方程;
(2)若直線l:y=-x+m與橢圓E交于A,B兩點,以AB為直徑的圓與y軸相切,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在△ABC中,$\overrightarrow{A{P}_{0}}$=3$\overrightarrow{{P}_{0}B}$,∠C=120°,AC=2.且對于邊AB上任意一點P,當(dāng)且僅當(dāng)P在P0時,$\overrightarrow{PB}$•$\overrightarrow{PC}$取得最小值,則下列結(jié)論一定正確的是(  )
A.∠BAC=45°B.S△ABC=$\frac{\sqrt{3}}{2}$C.AC=BCD.AB=$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在△ABC中,AB=3,AC=2,BC=4,則$\overrightarrow{CA}$•$\overrightarrow{AB}$=( 。
A.$\frac{3}{2}$B.$\frac{2}{3}$C.-$\frac{2}{3}$D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)直線2x+3y+1=0與圓x2+y2-2x+4y=0相交于A,B,則弦AB的垂直平分線的方程為3x-2y-7=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.方程2sin$\frac{2}{3}$x=1的解集是{x|x=3kπ+$\frac{π}{4}$或x=3kπ+$\frac{5π}{4}$,k∈Z }.

查看答案和解析>>

同步練習(xí)冊答案