(2012•四川)某公司生產(chǎn)甲、乙兩種桶裝產(chǎn)品.已知生產(chǎn)甲產(chǎn)品1桶需耗A原料1千克、B原料2千克;生產(chǎn)乙產(chǎn)品1桶需耗A原料2千克,B原料1千克.每桶甲產(chǎn)品的利潤是300元,每桶乙產(chǎn)品的利潤是400元.公司在生產(chǎn)這兩種產(chǎn)品的計劃中,要求每天消耗A、B原料都不超過12千克.通過合理安排生產(chǎn)計劃,從每天生產(chǎn)的甲、乙兩種產(chǎn)品中,公司共可獲得的最大利潤是( 。
分析:根據(jù)題設(shè)中的條件可設(shè)每天生產(chǎn)甲種產(chǎn)品x桶,乙種產(chǎn)品y桶,根據(jù)題設(shè)條件得出線性約束條件以及目標(biāo)函數(shù)求出利潤的最大值即可.
解答:解:設(shè)分別生產(chǎn)甲乙兩種產(chǎn)品為x桶,y桶,利潤為z元
則根據(jù)題意可得
x+2y≤12
2x+y≤12
x,y≥0且x,y∈N
,z=300x+400y
作出不等式組表示的平面區(qū)域,如圖所示
作直線L:3x+4y=0,然后把直線向可行域平移,
x+2y=12
2x+y=12
可得x=y=4,
此時z最大z=2800
點評:本題考查用線性規(guī)劃知識求利潤的最大值,這是簡單線性規(guī)劃的一個重要運(yùn)用,解題的關(guān)鍵是準(zhǔn)確求出目標(biāo)函數(shù)及約束條件
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•四川)交通管理部門為了解機(jī)動車駕駛員(簡稱駕駛員)對某新法規(guī)的知曉情況,對甲、乙、丙、丁四個社區(qū)做分層抽樣調(diào)查.假設(shè)四個社區(qū)駕駛員的總?cè)藬?shù)為N,其中甲社區(qū)有駕駛員96人.若在甲、乙、丙、丁四個社區(qū)抽取駕駛員的人數(shù)分別為12,21,25,43,則這四個社區(qū)駕駛員的總?cè)藬?shù)N為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•四川)某居民小區(qū)有兩個相互獨立的安全防范系統(tǒng)(簡稱系統(tǒng))A和B,系統(tǒng)A和B在任意時刻發(fā)生故障的概率分別為
1
10
和p.
(Ⅰ)若在任意時刻至少有一個系統(tǒng)不發(fā)生故障的概率為
49
50
,求p的值;
(Ⅱ)設(shè)系統(tǒng)A在3次相互獨立的檢測中不發(fā)生故障的次數(shù)為隨機(jī)變量ξ,求ξ的概率分布列及數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•四川)某居民小區(qū)有兩個相互獨立的安全防范系統(tǒng)(簡稱系統(tǒng))A和B,系統(tǒng)A和系統(tǒng)B在任意時刻發(fā)生故障的概率分別為
1
10
和p.
(Ⅰ)若在任意時刻至少有一個系統(tǒng)不發(fā)生故障的概率為
49
50
,求p的值;
(Ⅱ)求系統(tǒng)A在3次相互獨立的檢測中不發(fā)生故障的次數(shù)大于發(fā)生故障的次數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012四川理)某居民小區(qū)有兩個相互獨立的安全防范系統(tǒng)(簡稱系統(tǒng)),系統(tǒng)在任意時刻發(fā)生故障的概率分別為.

(Ⅰ)若在任意時刻至少有一個系統(tǒng)不發(fā)生故障的概率為,求的值;

(Ⅱ)設(shè)系統(tǒng)在3次相互獨立的檢測中不發(fā)生故障的次數(shù)為隨機(jī)變量,求的概率分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案