命題p:?x∈R,sinx≤1的非命題為
?x∈R,sinx>1
?x∈R,sinx>1
分析:先否定題設(shè),再否定結(jié)論,根據(jù)“任意”的否定是“存在”,“sinx≤1”的否定是“sinx>1”,可得結(jié)論.
解答:解:∵“?x∈R”的否定是“?x∈R”,“sinx≤1”的否定是“sinx>1”,
∴“?x∈R,sinx≤1”的否定是“?x∈R,sinx>1”.
故答案為:?x∈R,sinx>1.
點(diǎn)評(píng):本題主要考查含全稱量詞的命題的否定,解題的關(guān)鍵任意的否定是存在,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中真命題的個(gè)數(shù)為
 

①p:?x∈R,x2-x+
14
≥0;
②q:所有的正方形都是矩形;
③r:?x∈R,x2+2x+2≤0;
④s:至少有一個(gè)實(shí)數(shù)x,使x2+1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題的否定是真命題的有①p:?x∈R,x2-x+
1
4
≥0
②q:所有的正方形都是矩形③r:?x∈R,x2+2x+2≤0④s:至少有一個(gè)實(shí)數(shù)x,使x2-1=0( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列五個(gè)命題中正確命題的個(gè)數(shù)是(  )
(1)對(duì)于命題P:?x∈R,使得x2+x+1<0,則¬P:?x∈R,均有x2+x+1>0;
(2)m=3是直線(m+3)x+my-2=0與直線mx-6y+5=0互相垂直的充要條件;
(3)已知回歸直線的斜率的估計(jì)值為1.23,樣本點(diǎn)的中心為(4,5),則回歸直線方程為
y
=1.23x+0.08;
(4)若實(shí)數(shù)x,y∈[-1,1],則滿足x2+y2≥1的概率為
π
4

(5)曲線y=x2與y=x所圍成圖形的面積是S=∫
 
1
0
(x-x2)dx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:安徽安慶市2009年高三模擬考試(二模)試題數(shù)學(xué)(文) 題型:022

給出下列四個(gè)結(jié)論:

①合情推理是由特殊到一般的推理,得到的結(jié)論不一定正確,演繹推理是由一般到特殊的推理,得到的結(jié)論一定正確.

②甲、乙兩同學(xué)各自獨(dú)立地考察兩個(gè)變量X、Y的線性相關(guān)關(guān)系時(shí),發(fā)現(xiàn)兩人對(duì)X的觀察數(shù)據(jù)的平均值相等,都是s,對(duì)Y的觀察數(shù)據(jù)的平均值也相等,都是t,各自求出的回歸直線分別是l1、l2,則直線l1與l2必定相交于點(diǎn)(s,t).

③用獨(dú)立性檢驗(yàn)(2×2列聯(lián)表法)來考察兩個(gè)分類變量是否有關(guān)系時(shí),算出的隨機(jī)變量K2的值越大,說明“X與Y有關(guān)系”成立的可能性越大.

④命題P:x∈R,使得x2+x+1<0,則P:x∈R均有x2+x+1≥0.

其中結(jié)論正確的序號(hào)為________.(請(qǐng)寫出你認(rèn)為正確的所有結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

寫出下列命題的“否定”,并判斷其真假.

(1)p:x∈R,x2-x+≥0;

(2)q:所有的正方形都是矩形;

(3)r:x∈R,x2+2x+2≤0;

(4)s:至少有一個(gè)實(shí)數(shù)x,使x3+1=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案