已知函數(shù)f(x)=loga
1+x1-x
(a>0,且a≠1)
(Ⅰ)求函數(shù)f(x)的定義域;
(Ⅱ)判斷函數(shù)f(x)的奇偶性、并證明;
(Ⅲ)求使不等式f(x)>0成立的x的取值范圍.
分析:(Ⅰ)由函數(shù)f(x)的解析式可得
1+x
1-x
>0,即 (1+x)(1-x)>0,由此解得x的范圍,即可得到函數(shù)f(x)的定義域.
(Ⅱ)由于函數(shù)f(x)的定義域關(guān)于原點對稱,且f(-x)=-f(x),根據(jù)函數(shù)的奇偶性的定義得出結(jié)論.
(Ⅲ)由不等式f(x)>0可得,當(dāng)a>1時,由
1+x
1-x
>1,求得不等式的解集.當(dāng)1>a>0時,0<
1+x
1-x
<1,即
1+x
1-x
>0
1+x
1-x
<1
,解此不等式組求得不等式的解集,
綜合可得結(jié)論.
解答:解:(Ⅰ)∵函數(shù)f(x)=loga
1+x
1-x
(a>0,且a≠1),可得
1+x
1-x
>0,即 (1+x)(1-x)>0,解得-1<x<1,
故函數(shù)f(x)的定義域為(-1,1).
(Ⅱ)由于函數(shù)f(x)的定義域為(-1,1),關(guān)于原點對稱,且f(-x)=loga
1-x
1+x
=-loga
1+x
1-x
=-f(x),
故函數(shù)f(x)為奇函數(shù).
(Ⅲ)由不等式f(x)>0可得,當(dāng)a>1時,
1+x
1-x
>1,即 
2x
x-1
 <0
,解得0<x<1.
當(dāng)1>a>0時,0<
1+x
1-x
<1,即  
1+x
1-x
>0
1+x
1-x
<1
,即
-1<x<1
x>1 ,或x<0
,解得-1<x<0.
綜上可得,當(dāng)a>1時,不等式的解集為{x|0<x<1}; 當(dāng)1>a>0時,不等式的解集為{x|-1<x<0}.
點評:本題主要考查對數(shù)函數(shù)的圖象和性質(zhì)應(yīng)用,分式不等式的解法,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
x3-
3
2
ax2-(a-3)x+b

(1)若函數(shù)f(x)在P(0,f(0))的切線方程為y=5x+1,求實數(shù)a,b的值:
(2)當(dāng)a<3時,令g(x)=
f′(x)
x
,求y=g(x)在[l,2]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
x2-alnx
的圖象在點P(2,f(2))處的切線方程為l:y=x+b
(1)求出函數(shù)y=f(x)的表達式和切線l的方程;
(2)當(dāng)x∈[
1
e
,e]
時(其中e=2.71828…),不等式f(x)<k恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx,g(x)=
12
x2+a
(a為常數(shù)),直線l與函數(shù)f(x)、g(x)的圖象都相切,且l與函數(shù)f(x)的圖象的切點的橫坐標為1.
(1)求直線l的方程及a的值;
(2)當(dāng)k>0時,試討論方程f(1+x2)-g(x)=k的解的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
13
x3+x2+ax

(1)討論f(x)的單調(diào)性;
(2)設(shè)f(x)有兩個極值點x1,x2,若過兩點(x1,f(x1)),(x2,f(x2))的直線l與x軸的交點在曲線y=f(x)上,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-
32
ax2+b
,a,b為實數(shù),x∈R,a∈R.
(1)當(dāng)1<a<2時,若f(x)在區(qū)間[-1,1]上的最小值、最大值分別為-2、1,求a、b的值;
(2)在(1)的條件下,求經(jīng)過點P(2,1)且與曲線f(x)相切的直線l的方程;
(3)試討論函數(shù)F(x)=(f′(x)-2x2+4ax+a+1)•ex的極值點的個數(shù).

查看答案和解析>>

同步練習(xí)冊答案