3.在△ABC中,角A,B,C的對邊分別為a,b,c,已知$\frac{cosA-2cosB}{cosC}=\frac{2b-a}{c}$.
(1)求$\frac{sinB}{sinA}$的值;
(2)若cosC=$\frac{1}{4}$,c=2,求△ABC的面積S.

分析 (1)由正弦定理化簡已知可得$\frac{cosA-2cosB}{cosC}=\frac{2sinB-sinA}{sinC}$,進而利用三角函數(shù)恒等變換的應用即可化簡得解$\frac{sinB}{sinA}$的值.
(2)由余弦定理可知$cosC=\frac{{{a^2}+{b^2}-{c^2}}}{2ab}=\frac{1}{4}$,由(1)可知$\frac{sinB}{sinA}=2$,利用正弦定理可得$\frac{a}=2$,結合c=2即可求得b,a的值,利用三角形面積公式即可計算得解△ABC的面積S.

解答 解:(1)在△ABC中,由正弦定理得$\frac{cosA-2cosB}{cosC}=\frac{2sinB-sinA}{sinC}$,
整理得sin(A+C)=2sin(B+C),
又∵A+B+C=π,
∴sinB=2sinA,即$\frac{sinB}{sinA}=2$,
(2)由余弦定理可知$cosC=\frac{{{a^2}+{b^2}-{c^2}}}{2ab}=\frac{1}{4}$①,
由(1)可知$\frac{sinB}{sinA}=2$,即$\frac{a}=2$②,
再由c=2,③,由①②③聯(lián)立求得b=2,a=1,
又$sinC=\sqrt{1-{{cos}^2}C}=\sqrt{1-\frac{1}{16}}=\frac{{\sqrt{15}}}{4}$,
可得:$S=\frac{1}{2}absinC=\frac{{\sqrt{15}}}{4}$.

點評 本題主要考查了正弦定理,三角函數(shù)恒等變換的應用,余弦定理,三角形面積公式在解三角形中的綜合應用,考查了計算能力和轉化思想,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

13.已知α,β均為銳角,且sinα=$\frac{{\sqrt{26}}}{26}$,tanβ=$\frac{2}{3}$.
(1)求α+β的值;
(2)求cos(α+2β)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.在△ABC中,$\overrightarrow{AC}•\overrightarrow{AB}$=|${\overrightarrow{BC}}$|=2,則△ABC面積的最大值為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知△ABC的內角A,B,C的對邊分別為a,b,c,且有a2+b2-c2=4S△ABC
(1)求角C的大小;
(2)若c=$\sqrt{2}$,求a-$\frac{\sqrt{2}}{2}$b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.推理“①矩形是平行四邊形;②三角形不是平行四邊形;③所以三角形不是矩形.”中的大前提是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.下列函數(shù)中,在定義域內是減函數(shù)的是( 。
A.f(x)=-$\frac{1}{x}$B.f(x)=$\sqrt{x}$C.f(x)=$\frac{1}{{2}^{x-1}}$D.f(x)=-tanx

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.如圖給出的計算1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{2016}$的值的一個程序框圖,則判斷框內應填入的條件是(  )
A.i≤2016B.i>2016C.i≤2015D.i>2015

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=ax+$\frac{x-1}$(a•b≠0).
(1)當b=a=1時,求函數(shù)f(x)的單調區(qū)間;
(2)若函數(shù)f(x)在點(2,f(2))處的切線方程是y=2x-3,證明:曲線y=f(x)上任一點處的切線與直線x=1和直線y=x所圍成的三角形面積為定值,并求出此定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知平面直角坐標系上一動點P(x,y)到點A(-2,0)的距離是點P到點B(1,0)的距離的2倍.
(1)求點P的軌跡方程;
(2)已知點Q(2,0),過點A的直線l與點P的軌跡C相交于E,F(xiàn)兩點,當△QEF的面積最大時,求直線l的方程;
(3)過直線l′:3x+4y+14=0上一點R引點P的軌跡C的兩條切線,切點分別為M,N,當線段MN的長度最小時,求MN所在直線的方程.

查看答案和解析>>

同步練習冊答案