3.已知圓的方程是x2+y2=1,則經(jīng)過圓上一點(diǎn)M(1,0)的切線方程是(  )
A.x=1B.y=1C.x+y=1D.x-y=1

分析 由圓的方程找出圓心坐標(biāo)和圓的半徑,然后求出經(jīng)過圓上一點(diǎn)M(1,0)的切線方程.

解答 解:由圓x2+y2=1,得到圓心A的坐標(biāo)為(0,0),圓的半徑r=1,
∴經(jīng)過圓上一點(diǎn)M(1,0)的切線方程是x=1,
故選:A.

點(diǎn)評 此題考查學(xué)生掌握點(diǎn)與圓的位置關(guān)系及直線與圓的位置關(guān)系,掌握兩直線垂直時(shí)斜率所滿足的關(guān)系,會根據(jù)一點(diǎn)的坐標(biāo)和直線的斜率寫出直線的方程,是一道綜合題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.二次函數(shù)f(x)滿足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)設(shè)g(x)=2x+m,若對任意的x∈[-1,1],f(x)>g(x)恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.谷志偉,簡書兩位老師下棋,簡老師獲勝的概率是40%,谷老師不勝的概率為60%,則兩位老師下成和棋的概率為( 。
A.10%B.30%C.20%D.50%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知拋物線y2=2px(p>0)上的點(diǎn)到焦點(diǎn)的距離的最小值為2,過點(diǎn)(0,1)的直線l與拋物線只有一個(gè)公共點(diǎn),則焦點(diǎn)到直線l的距離為(  )
A.1或$\sqrt{2}$或2B.1或2或$\sqrt{5}$C.2或$\sqrt{2}$D.2或$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若復(fù)數(shù)z滿足(3-4i+z)i=2+i,則復(fù)數(shù)z所對應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.直線$\left\{\begin{array}{l}{x=-2-\sqrt{2}t}\\{y=3+\sqrt{2}t}\end{array}\right.$(t為參數(shù))對應(yīng)的普通方程是x+y-1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)f(x)=$\left\{\begin{array}{l}{lo{g}_{4}x-1,x>0}\\{{2}^{x}-x+\frac{1}{3}{a}^{3},x≤0}\end{array}\right.$,若f(f(4))=$\frac{11}{3}$,則a=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)$f(x)=\frac{{m•{4^x}+1}}{2^x}$是偶函數(shù).
(1)求實(shí)數(shù)m的值;
(2)若關(guān)于x的不等式2k•f(x)>3k2+1在(-∞,0)上恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某單位280名員工參加“我愛閱讀”活動,他們的年齡在25歲至50歲之間,按年齡分組:第1組[25,30),第2組[30,35),第3組[35,40),第4組[40,45),第5組[45,50),得到的頻率分布直方圖如圖所示.
( I)現(xiàn)要從年齡低于40歲的員工中用分層抽樣的方法抽取12人,則年齡在第1,2,3組的員工人數(shù)分別是多少?
( II)為了交流讀書心得,現(xiàn)從上述12人中再隨機(jī)抽取3人發(fā)言,設(shè)3人中年齡在[35,40)的人數(shù)為ξ,求ξ的數(shù)學(xué)期望;
( III)為了估計(jì)該單位員工的閱讀傾向,現(xiàn)對從該單位所有員工中按性別比例抽取的40人做“是否喜歡閱讀國學(xué)類書籍”進(jìn)行調(diào)查,調(diào)查結(jié)果如下表所示:(單位:人)
喜歡閱讀國學(xué)類 不喜歡閱讀國學(xué)類 合計(jì)
 男 14 4 18
 女 8 14 22
 合計(jì) 22 18 40
根據(jù)表中數(shù)據(jù),我們能否有99%的把握認(rèn)為該單位員工是否喜歡閱讀國學(xué)類書籍和性別有關(guān)系?
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d
P(K2≥k00.050.0250.0100.0050.001
k03.8415.0246.6357.87910.828

查看答案和解析>>

同步練習(xí)冊答案