在如圖所示的幾何體中,四邊形是正方形,⊥平面,,、分別為、、的中點(diǎn),且.

(1)求證:平面⊥平面;

(2)求三棱錐與四棱錐的體積之比.

 

【答案】

(1)主要證明平面 (2)

【解析】

試題分析:解:(1)證明:∵平面,

平面

平面,∴,

為正方形,∴DC.

,∴平面.

中,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013100923472952934509/SYS201310092348132268949153_DA.files/image012.png">分別為、的中點(diǎn),

,∴平面.

平面,∴平面平面.

(2)不妨設(shè),∵為正方形,∴,

又∵平面

所以.

由于平面,且,

所以即為點(diǎn)到平面的距離,

三棱錐××2=.

所以.

考點(diǎn):平面與平面垂直的判定;棱柱、棱錐、棱臺(tái)的體積.

點(diǎn)評(píng):本題考查空間中的線面關(guān)系,考查線面垂直、面面垂直的判定及幾何體體積的計(jì)算,考查試圖能力和邏輯思維能力.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在如圖所示的幾何體中,四邊形ABCD、ADEF、ABGF均為全等的直角梯形,且BC∥AD,AB=AD=2BC.
(Ⅰ)求證:CE∥平面ABGF;
(Ⅱ)求二面角G-CE-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在如圖所示的幾何體中,平行四邊形ABCD的頂點(diǎn)都在以AC為直徑的圓O上,AD=CD=DP=a,AP=CP=
2
a,DP∥AM,且AM=
1
2
DP,E,F(xiàn)分別為BP,CP的中點(diǎn).
(I)證明:EF∥平面ADP;
(II)求三棱錐M-ABP的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•朝陽區(qū)一模)在如圖所示的幾何體中,四邊形ABCD為平行四邊形,∠ABD=90°,EB⊥平面ABCD,EF∥AB,AB=2,EF=1,BC=
13
,且M是BD的中點(diǎn).
(Ⅰ)求證:EM∥平面ADF;
(Ⅱ)在EB上是否存在一點(diǎn)P,使得∠CPD最大?若存在,請(qǐng)求出∠CPD的正切值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在如圖所示的幾何體中,面CDEF為正方形,面ABCD為等腰梯形,AB∥CD,AB=2BC,∠ABC=60°,AC⊥FB.
(Ⅰ)求證:AC⊥平面FBC;
(Ⅱ)線段ED上是否存在點(diǎn)Q,使平面EAC⊥平面QBC?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在如圖所示的幾何體中,EA⊥平面ABC,DB⊥平面ABC,AC⊥BC,AC=BC=BD=2AE=2,M是AB的中點(diǎn). 
(1)求證:CM⊥平面ABDE;
(2)求幾何體的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案